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Abstract—SMT solvers are utilized to check the satisfiability of
logic formulas and have been applied in various crucial domains,
including software verification, test case generation, and program
synthesis. However, bugs hidden in SMT solvers can lead to
severe consequences, causing erroneous results in these domains.
Therefore, ensuring the reliability and robustness of SMT solvers
is of critical importance. Despite several testing approaches
proposed for SMT solvers, generating effective test formulas
to comprehensively test SMT solvers remains a challenge. To
address this challenge, in this study, we propose to port large
language models (LLMs) to generate SMT formulas for fuzzing
solvers. Specifically, the study presents a novel retrain-finetune
pipeline to unleash the potential of language models to generate
effective SMT formulas and improve their generation performance
through data augmentation. We implemented our approach as a
practical fuzzing tool, named LAST, and then extensively tested
the state-of-the-art SMT solvers, namely Z3, cvc5, and Bitwuzla.
To date, LAST has successfully uncovered 65 genuine bugs for
the solvers, of which 45 have been fixed by the developers.

Index Terms—SMT solver, fuzzing, large language model,
retrain-finetune, data augmentation

I. INTRODUCTION

Satisfiability Modulo Theory (SMT) solvers are sophisticated
automated theorem proving tools that can check the satisfiability
of first-order logic formulas in specific theories, such as
arithmetic, arrays, and bit vectors [1]. Nowadays, SMT solvers
are more versatile and applied in various fields, including
software verification [2], program synthesis [3], and program
analysis [4]. Given the wide range of applications for SMT
solvers, ensuring their quality is of paramount importance.
Specifically, solvers’ quality affects the reliability and efficiency
of their intended application. For example, as reported in the
literature [5], [6], Amazon invokes SMT solvers tens of millions
of times per day for service access control. As a result, the
reliability and performance of SMT solvers can directly affect
the stability of Amazon’s services. Consequently, rigorous
testing of SMT solvers is essential to ensure their quality.

To this end, researchers have proposed various techniques to
generate test inputs for identifying bugs in SMT solvers. These
techniques can broadly be categorized into two main categories:
formula generation and formula mutation. Formula generation
techniques, such as FuzzSMT [7] and Murxla [8], typically
generate test formulas from scratch using predefined strategies.
However, the diversity of the generated formulas is limited
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as they heavily rely on the designed strategies. By contrast,
formula mutation techniques transform existing formulas in
different ways to generate new test instances. For example,
YinYang [9] combines two formulas with the same satisfiability
to generate more intricate formulas with known ground truth
that can be used to validate solvers. STORM [10] fragments
a seed formula into multiple sub-formulas and reassembles
them to produce satisfiable mutants. Additionally, OpFuzz [11]
mutates the operators in formulas, and TypeFuzz [12] further
expands its mutation space by generating new formula snippets.
More recently, HistFuzz [13] has been proposed to utilize the
elements mined from historical bug-triggering formulas of
solvers to produce effective mutants. These techniques aim
to stress-test SMT solvers by focusing on different aspects to
mutate formulas. However, a limitation of those techniques,
as pointed out in the prior studies [6], [12], is the restricted
mutation space, which may hinder their effectiveness. Moreover,
HistFuzz only utilizes the mined information in a rudimentary
way as there may be many valuable clues for testing that remain
hidden within the bug-triggering formulas.

Unfortunately, designing effective methods to generate vast
and diverse test formulas for stress-testing SMT solvers is
a challenging task. Besides, even experienced SMT solver
experts may struggle to fully explore the effective elements in
historical bug-triggering formulas and solver-specific behaviors
for different solvers. Therefore, relying solely on human-written
test formulas or formulas generated by separate techniques
is insufficient for thoroughly validating SMT solvers. These
challenges pose significant hurdles to the thorough testing
of SMT solvers. Encouragingly, large pre-trained language
models (LLMs) have shown stunning performance on various
natural language and programming language tasks (e.g., code
understanding [14], [15], program repair [16], and compiler
testing [17]), which points out a promising way to address the
challenges of lacking effective test formulas for SMT solvers.
Although SMT formulas possess a highly specialized syntax
and strict rules designed to express complex logical constraints,
which distinguishes them from other natural and programming
languages, they exhibit a level of “naturalness” similar to
other languages [18]. Therefore, LLMs are also expected to
be effective in generating SMT formulas. However, there is
currently no empirical evidence to support the effectiveness
of LLMs in generating test formulas. Furthermore, prior
research [19] has highlighted the crucial role of high-quality



training data in successfully transferring pre-trained LLMs
to domains other than their original ones. This also poses a
significant challenge for SMT solvers, as acquiring high-quality
training data for SMT formula generation is hardly feasible.

Approach. In this paper, we propose a novel approach
empowered by pre-trained LLMs to tackle the challenges of
generating effective test formulas for SMT solver fuzzing. Our
proposed approach involves two key steps, i.e., retraining and
finetuning. First, we retrain the LLMs on a large corpus of
SMT formulas to enable them to acquire SMT-specific domain
knowledge. To achieve this goal, we collect training data from
the SMT-LIB official benchmarks [20], which comprise a
vast number of formulas that strictly adhere to the standard
specification. By retraining on this data, the LLMs can generate
diverse and valid SMT formulas. Second, we further finetune
the LLMs on historical bug-triggering formulas, which are
known to involve structures that are more likely to trigger
bugs [13] and solver-specific behaviors. The finetuning process
equips LLMs with additional domain knowledge, guiding them
to generate more test formulas capable of triggering SMT
solver bugs. The rationale behind this approach is that the
LLMs can be retrained to generate a massive number of valid
SMT formulas, and the finetuning process can further guide
the LLMs to generate effective test formulas that have the
potential to unearth SMT solver bugs.

As discussed previously, effectively transferring pre-trained
LLMs for SMT solver testing necessitates acquiring high-
quality and abundant training data in the form of SMT
formulas, which constitutes a critical yet challenging task.
Hence, we propose two novel mutation strategies for data
augmentation during the retraining and finetuning processes.
For retraining, we propose diversity-oriented mutation to
generate different formulas from existing ones for retraining the
LLMs. Specifically, we design two types of mutation strategies
to mutate the formulas in different dimensions, including term
mutation and operator mutation. The term mutation generates
mutants by adding, deleting, or replacing terms in the given
formulas, while the operator mutation generates mutants by
changing the operators in formulas, including theory function
symbols and logical connectives. By together using these
two types of mutation strategies, we can generate a large
number of diverse mutants that cover comprehensive solving
functionalities in SMT solvers, which alleviates the lack of
high-quality training data for LLMs.

For finetuning, we use semantic-preserving mutation to
augment bug-triggering formulas. This mutation strategy aims
to preserve the mutants’ abilities to trigger bugs. The previous
study [13] has found that most semantic-equivalent mutants
of bug-triggering formulas can also trigger the original bugs.
Therefore, we utilize the functionalities of Z3 [21], one of the
most well-known SMT solvers, to conduct semantic-preserving
transformations for obtaining the semantic-equivalent mutants
of bug-triggering formulas. This allows us to generate sufficient
formulas for finetuning the LLMs.Ultimately, our proposed
approach will result in a powerful LLM that can generate

effective and diverse test formulas for testing SMT solvers.

Results. We implement our approach as a practical testing
tool for SMT solvers, called LAST1, based on the GPT-2 [22],
a well-known pre-trained language model. We evaluate the
effectiveness of LAST on three SMT solvers, namely Z3 [21],
cvc5 [23], and Bitwuzla [24]. Ultimately, a total of 65 bugs
are reported for these three state-of-the-art SMT solvers, of
which 45 are fixed by the developers. Furthermore, we have
found that LAST is capable of generating a large proportion
of valid formulas, indicating the effectiveness of LLMs in
generating content beyond conventional natural language and
programming language. Additionally, we have also observed
that the test formulas generated by LAST attain high code
coverage and demonstrate effective bug detection capabilities
when compared to other SMT solver testing tools. In summary,
our approach of retraining and then finetuning LLMs for SMT
solver testing shows great potential.

In this paper, we make the following main contributions:

• Originality: We propose a novel retrain-finetune pipeline
for retargeting LLMs to generate diverse formulas that can
stress-test SMT solvers. To the best of our knowledge, we
are the first to employ LLMs for SMT solver validation. Our
work provides empirical evidence for the effectiveness of
LLMs in this domain.

• Novelty: We introduce two novel strategies, namely,
diversity-oriented mutation and semantic-preserving mu-
tation, to augment the training data for retraining and
finetuning LLMs. These strategies enrich and diversify the
data, enabling LLMs to generate effective SMT formulas
that make a significant contribution to the field.

• Significance: Our primary objective is to identify authentic
bugs in SMT solvers. We demonstrate that LLMs can
generate content beyond typical natural and programming
languages, indicating their potential for future researches.

• Usefulness: We have reported 65 bugs for three advanced
SMT solvers, namely, Z3, cvc5, and Bitwuzla, of which
45 have been fixed by developers. Based on our evaluation
results, our proposed tool LAST also demonstrates comple-
mentarity to existing SMT solver fuzzing techniques.

Paper Organization. The rest of this paper is structured
as follows. Section II illustrates the high-level idea of our
approach. Section III formalizes our approach and describes the
implementation of LAST. Next, we elaborate on our extensive
evaluation in detail in Section IV. In Section V, we conduct
more discussions on the results. Finally, we survey related
work in Section VI, and the conclusion is in Section VII.

II. BACKGROUND AND MOTIVATION

A. SMT-LIB Language

The SMT-LIB initiative was started in 2003 [25] and has
produced several versions of the SMT-LIB standard, which spec-
ifies comprehensive syntax and semantics for logic formulas.

1LLM-bAsed SMT solver fuzzer = LAST



(declare-fun x () Bool)
(declare-fun y () Real)
(assert (forall ((z Real)) (= x (< z y))))
(check-sat)

Fig. 1: A formula instance represented in SMT-LIB format.

The SMT-LIB language [26] is one of the most representative
input languages for SMT solvers, which is adopted by the
majority of solvers. In the specification, there are various
defined commands for different purposes. The most basic
commands are declare-fun, assert, and check-sat.
The declare-fun command is used to declare new symbols.
The assert command in SMT-LIB will add a formula to
the current assertion stack, which is a collection of formulas
that represent the problem to be solved. The check-sat
command queries the solver to decide on the satisfiability of
the current assertion stack. Therefore, an SMT solver will
return sat only if all the formulas in the assertion stack can
be satisfied simultaneously. In contrast, if no assignment can
satisfy all the assertions, that instance is unsat.

Operators and terms are the fundamental building blocks of
an SMT formula. Concretely, the predefined function symbols
in SMT-LIB (e.g., +,−, ∗, /) are regarded as operators in
the prior study [11]. Term is a syntactic expression that
represents a value of a certain sort (e.g., Int and Bool).
Terms can be constants, variables, the application of a function
symbol or binders (e.g., universal quantifier forall and
existential quantifier exists) to one or more terms. Figure 1
is an example of an SMT-LIB instance. In this example, the
declare-fun command declares the variable x as a Boolean
variable and the variable y as a real variable. The assert
command adds a term, i.e., (forall ((z Real)) (=
x (< z y))), to the current assertion stack, which is a
quantified formula bound by the variable z. In this term,
there are some nested subterms such as (< z y), y, and
so on. Additionally, the formula also contains operators such
as forall, =, and <. It is worth noting that the formula is
simplified from the instance generated by LAST that reveals a
new bug2 in cvc5, which has also been fixed by the developers.

B. Large Pre-trained Language Models

Large pre-trained language models (LLMs) are typically
transformer-based neural networks [27] that are trained on
massive amounts of text data without any supervision or task-
specific objective. The underlying principle is that by learning
to predict the next word in a sequence of words, LLMs can
capture the general patterns and structures of natural language.
LLMs can be further finetuned on smaller and more specific
datasets for downstream tasks, such as text classification,
summarization, and generation. Besides, LLMs can also be
retrained on program datasets to learn the syntax and semantics
of different programming languages [19]. Consequently, they
have been successfully applied in code-related tasks such as

2https://github.com/cvc5/cvc5/issues/9640

code completion and code summarization [19]. In addition,
LLMs also offer an opportunity for software testing as they
are capable of generating massive test cases and have shown
to be effective in fuzzing JavaScript engines [17] and deep
learning libraries [28], [29].

However, generating SMT formulas remains a challenge
for LLMs, as SMT-LIB is a formal logic language with a
highly specialized syntax and strict rules designed to express
complex logical constraints. Despite this, SMT-LIB still exhibits
a certain degree of “naturalness”, which makes it possible to be
learned by LLMs. For example, SMT formulas can represent
the constraints of a program, implying that these formulas are
inherently connected to the program’s semantics. Drawing from
the “naturalness” observed in programming languages [18], we
can speculate that SMT formulas also exhibit a degree of
“naturalness”, thus suggesting the adaptability of LLMs for
generating SMT formulas. However, this claim still lacks em-
pirical evidence. Furthermore, re-purposing LLMs to produce
effective SMT formulas necessitates high-quality training data,
which is not easily accessible. In this study, we aim to tackle
these challenges and investigate the feasibility of training LLMs
for the purpose of fuzzing SMT solvers.

C. Data Augmentation

Data augmentation is a widely used technique aimed at
enhancing the diversity and size of a dataset by applying various
transformations to the original data [19]. This technique has
been demonstrated to be effective in enhancing the general-
ization ability and robustness of deep neural networks [30].
Initially, data augmentation techniques were utilized in the field
of computer vision [31], specifically involving transformations
such as flipping, rotating, and color modification of images.
These improve the effectiveness of model training by promoting
diversity in training data. More recently, the application of
data augmentation techniques has expanded to other domains,
including code data [32]. For instance, the existing study [19]
employed data augmentation techniques through the use of
code transformation tools [33]. These tools can increase the
size of the dataset with known labels through a series of
transformations that preserve the semantics of the original
code. The resulting augmented dataset has been shown to
improve model performance in source code understanding.

Motivated by these recent advancements, we propose the
integration of data augmentation techniques for SMT formulas
as a solution to address the challenge of limited high-quality
training data. This step is essential for effectively utilizing
LLMs in the context of SMT solver fuzzing. By enriching
the training dataset, we aim to enhance the generalization
capability of the resulting models, ultimately leading to
enhanced performance in generating effective SMT formulas.

III. APPROACH

In this section, we first present an overview of our proposed
technique, LAST, as depicted in Figure 2, followed by a
detailed elaboration. We describe how LAST processes and
augments training data to retrain an LLM for SMT solver
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Fig. 2: Overview of LAST.

validation. Besides, we illustrate how LAST generates test
instances to expose bugs in SMT solvers via differential testing.

A. Overview

In this study, we propose a retrain-finetune pipeline to learn
SMT-specific knowledge and bug-triggering elements from
normal formulas and bug-triggering formulas, respectively.
With current LLMs typically embodying millions of parameters
and further expected to grow in scale, it is crucial to gather
a large amount of diverse training data to train LLMs for
specific tasks [19]. Therefore, to address the challenge of
the insufficient training dataset for retraining the LLMs and
to strengthen them in generating bug-triggering formulas, we
propose two tailored data augmentation strategies, i.e., diversity-
oriented mutation strategy and semantic-preserving mutation
strategy, to generate diverse and high-quality training data used
for the retrain-finetune pipeline. Subsequently, we retrain the
LLM with the formulas augmented by the diversity-oriented
mutation. To strengthen the LLM to generate formulas that
uncover bugs, we further finetune it by using the bug-triggering
formulas along with the mutated ones from semantic-preserving
mutation. Finally, we utilize the learned LLM to produce a
huge amount of test formulas to fuzz SMT solvers. LAST spots
bugs by seeking inconsistencies between multiple SMT solvers
for solving the same formulas.

B. Data Collection

The success of transferring LLMs to generate formulas for
testing SMT solvers largely depends on the diversity of training
data used for retraining the LLMs. Therefore, the collection of
high-quality training data is essential for effectively retraining
the pre-trained LLMs. Fortunately, SMT-LIB offers official
benchmarks [20] for SMT solvers, which contain hundreds of
thousands of formulas that strictly adhere to the specifications.
Typically, the majority of these formulas are derived from real-
world applications or are used to evaluate performance, which
are unlikely to trigger bugs in SMT solvers [13]. Additionally,
the bug-tracking systems of open-source SMT solvers (e.g., Z3
and cvc5) often contain a lot of formulas that have triggered
bugs in previous versions of the solvers. These formulas can
be readily obtained from bug-tracking systems by retrieving
the issue titles and extracting the formulas contained within
the issues. Here, we employ the existing tool HistFuzz [34],

which provides this service, to collect bug-triggering formulas.
The formulas also include abundant solver-specific knowledge
that complements the official benchmarks, which has not been
fully explored in prior research. Previous studies [13], [35],
[36], [37] have shown that these bug-triggering inputs are
extremely effective in exposing bugs for SMT solvers and
other software systems. Therefore, we first retrain the pre-
trained language model by using the normal formulas from
the official benchmarks and then finetune the retrained model
with the bug-triggering formulas.

To ensure the training data is suitable for the LLM, we
filter out excessively long formulas in the benchmarks [29] as
they may hinder the LLM’s ability to effectively understand
and express complete semantics due to its limited context size
(e.g., 1024 tokens for GPT-2 [38]). In addition, we observe that
bug-triggering formulas are typically small in size, with over
90% of the formulas in these bug-triggering formulas having
a size of less than 5 KB. Therefore, we also exclude formulas
longer than 5 KB from the training data. After that, we gather
139,367 formulas as the training data for retraining the LLM,
and 3,474 bug-triggering formulas originating from Z3 and cvc5
for finetuning it. Finally, we refactor the collected formulas
to a uniform format before data augmentation. Concretely,
to enhance the readability of formulas and prevent naming
conflicts during data augmentation, we eliminate the let
binders and rename variables based on their sorts. For instance,
given the formula in Figure 1, we rename the variables x and
y to bool 0 and real 0, respectively.

C. Augmentation for Training Data

As our training dataset, especially the dataset for finetuning,
is relatively small compared to existing studies [17], [19],
we resort to data augmentation techniques to enhance the
quantity and diversity of our training data. On the one hand,
we apply diversity-oriented mutation to generate mutants from
the formulas in the official benchmarks for retraining. On
the other hand, we use semantic-preserving mutation on the
bug-triggering formulas to generate mutants that retain their
bug-triggering abilities as much as possible for finetuning.

1) Diversity-oriented Mutation:
To enhance the diversity of formulas, we introduce diversity-

oriented mutation, which mutates the formulas from two
perspectives, namely, term mutation and operator mutation.

For term mutation, given a formula, we add, delete, or
replace the terms in the formula to generate mutants.

Definition 3.1 (Term mutation): Let φ be an SMT formula,
t1 be a term in φ, and t2 be an alternative term. Assuming t1
and t2 have the same sort, the replace term mutation mutates
the formula φ by replacing the term t1 with t2, which can
be expressed as φ[t2/t1]. The add term mutation mutates the
formula φ by replacing the empty term with t2, which can
be expressed as φ[t2/∅]. The delete term mutation mutates
the formula φ by replacing the term t2 with the empty term,
which can be expressed as φ[∅/t1].

Algorithm 1 illustrates the process of term mutation. In the
process, a formula f is initially selected for mutation, and a new



Algorithm 1: Term-level mutation

1 Function Term level mutate(f , c):
2 t ← RandomSelect(f)
3 mutator ← SelectMutator(t)
4 c′ ← SortConversion(c)
5 if mutator = add then
6 mutant ← Add(f , t, c′)

7 if mutator = delete then
8 mutant ← Delete(f , t)

9 if mutator = replace then
10 mutant ← Replace(f , t, c′)

11 return mutant

term c is randomly chosen from the formulas in the benchmarks.
The mutation process begins by randomly selecting a term t
from f as the mutation target (Line 2). Next, the mutator
(i.e., add, delete, or replace) is determined based on the
operator that operates on t (Line 3). If the mutator’s arity is not
fixed (e.g., +, −, and, and or), a mutator is randomly selected
from the set of add, delete, and replace. Otherwise, only
the mutator replace is selected. To ensure that the mutant is
well-typed, c must be converted to the sort of t if their sorts are
different (Line 4), which is achieved by using the conversion
functions defined in the SMT-LIB standard as shown in Table I.
For example, if t is a real number and c is an integer, we can
convert c to a real number by adding a to real operator to
it. With the help of these conversion functions, we can convert
almost any term to a desired sort through their combination.
For instance, if t is a real number and c is a string, we can first
use the str.to int operator to convert c to an integer and
then use the to real operator to convert the term to a real
number. In practical implementations, we combine conversion
functions when no function can directly convert the sort of
the term c to the sort of the term t. If the term c cannot be
converted to the sort of t, it will be discarded. Ultimately,
the mutator is applied to f to produce a mutant (Lines 5-10),
which is typically well-typed.

Operator mutation involves replacing the operators in a
formula to produce mutants. To ensure producing well-typed
mutants, only operators with consistent sorts of operands
and return values as the original operator are considered as
replacements. If multiple operators meet this requirement, one
of them is selected at random. In this work, we adopt the
method described in a prior study [11] to perform operator
mutation. Our tool LAST randomly performs term mutation
or operator mutation ten times to generate a mutant, and we
produce ten mutants for each formula in the benchmarks. This
results in over one million mutants in total.

2) Semantic-preserving Mutation:
Although term mutation and operator mutation can also

enhance the diversity of mutants when applied to bug-triggering
formulas, they may compromise the formulas’ bug-triggering
abilities and undermine our intention of finetuning. To mitigate
this concern and ensure the preservation of bug-triggering abil-
ities in the augmented data, we introduce semantic-preserving

TABLE I: Conversion function symbols defined in SMT-LIB.

Conversion Function Symbol Description

ite Convert Bool to any sort
is int Convert Int or Real to Bool

to real Convert Int to Real

str.from int,str.from code Convert Int to Str

int2bv Convert Int to BitVec

to int Convert Real to Int

str.is digit Convert Str to Bool

str.to int,str.to code Convert Str to Int

bv2nat Convert BitVec to Int

mutation. Specifically, we leverage the SMT solver Z3 to
perform semantic-preserving mutation on the formulas by
using its various built-in tactics3, which can transform the
original formulas into equivalent ones with identical semantics.
A prior study [13] has demonstrated that the majority of mutants
transformed by Z3’s tactics can still trigger the same bugs as
the original formulas. To ensure a comprehensive and non-
redundant set of mutants, we filter out identical and duplicate
mutants, resulting in a final collection of 19,062 mutants derived
from the bug-triggering formulas.

By employing the aforementioned data augmentation strate-
gies, we generate a vast number of mutants from the bench-
marks and bug-triggering formulas, thereby significantly en-
riching and diversifying the training data. This approach is
expected to improve the overall performance of the LLM. With
the augmented data, models can be trained to acquire abundant
knowledge of SMT formulas, which aids in generating new
test formulas for exposing bugs.

D. Test Formula Generation

The language model used in LAST is GPT-2 [22], a pre-
trained model provided by OpenAI. This model has been trained
on a vast corpus of natural language data. To adapt the model
for generating SMT formulas, each formula in the augmented
training dataset is represented as a sequence of numerical
values. To achieve this, a vocabulary table is constructed, and
each command, symbol, and constant in the SMT formulas is
assigned an integer value. The vocabulary table is constructed
using the Byte Pair Encoding (BPE) tokenization method [39],
which is also utilized by GPT-2. BPE tokenization involves
breaking down each word into subwords based on its frequency
in the training data. Common words are tokenized as whole
words (e.g., and, or, not), while infrequent words are broken
down into characters that can be used to construct other words.
This approach enables the representation of an infinite number
of words in SMT formulas by reusing tokens from a finite list
of subwords while minimizing the number of tokens required to
represent the training dataset. Ultimately, the vocabulary table
stores the integer representation of each subword or token.
Model Retraining. To expand GPT-2’s ability to generate SMT
formulas, a retraining process is undertaken. This involves

3https://microsoft.github.io/z3guide/docs/strategies/tactics
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updating the weights of the pre-trained GPT-2 model using the
formulas in the benchmarks, as well as their corresponding
augmented versions through diversity-oriented mutation. The
Adam optimizer [40] is used to train the network for 150,000
iterations, with an initial learning rate of 0.0001. In our practice,
we retrain the model using two NVIDIA GeForce RTX 3080
Ti GPUs. It is crucial to note that the LLM is not designed
for generating SMT formulas, and thus this retraining process
is essential for this specific task.

Model Finetuning. After the retraining process, a finetuning
phase is conducted to finetune the model using the bug-
triggering formulas along with their corresponding mutants.
This process aims to enhance the model’s capacity by captur-
ing bug-triggering elements and incorporating solver-specific
knowledge. The finetuning process adopts the same training
settings as the retraining process, with the exception that only
the weights of the last two fully-connected layers in the model
are updated. This modification is made due to the relatively
small size of the training data, which is in line with a prior
study [17]. Additionally, the training process is set to 50,000
iterations with the same initial learning rate.

Test Input Instantiation. Once the trained model is available, it
can be utilized to generate new test formulas. Since the output
of the model is a sequence of text that can contain multiple
SMT formulas, it is necessary to instantiate the text into test
instances. To achieve this, we first provide the model with a
null prompt, which is essentially an empty string, and instruct it
to generate a sequence of tokens in an auto-regressive manner.
The null prompt is used because the customized model has
demonstrated satisfactory performance for various tasks when
provided with only a null prompt [41]. In practice, we query
the model to generate ten samples at a time with a random seed
at a temperature of 0.7. This temperature parameter controls
the level of creativity in the model’s output. Due to the limit
of output tokens, which are 1024 for GPT-2, each generated
formula is not guaranteed to be complete. Consequently, we
need to identify the longest complete formula in the generated
sequence and utilize it as a test input. Specifically, if the
incomplete formula solely lacks closing parentheses, we append
them to the end of the formula. Alternatively, if the assert
statement lacks more than just parentheses, we discard it and
use the complete assert statements above it in the generated
formulas as the test input. It is crucial to note that this procedure
is vital to ensure that the generated test inputs are complete.
Identifying the longest complete formulas in the generated
sequence increases the likelihood that the test instances will
be executed normally by SMT solvers.

E. Differential Testing

To expose bugs in SMT solvers, we adopt differential
testing, which involves comparing the results of multiple SMT
solvers on the same test formulas. Specifically, LAST inspects
the results of SMT solvers from various aspects such as
satisfiability and model correctness. Regarding satisfiability,
if a solver returns sat for a test formula but another solver

returns unsat, we consider it a potential soundness bug. To
determine which solver is responsible for the bug, we use
the get-model command to retrieve the model (i.e., an
assignment that is expected to satisfy the formula) of the
test formula using the solver that returns sat. We then use
the model to evaluate the test formula using the solvers under
test to determine which solver is responsible for the bug. If
the formula can be evaluated to sat using the model, we
consider it a soundness bug in the solver that returns unsat,
or vice versa. To avoid false positives, we exclude cases that
embody the under-specified behavior of SMT-LIB in different
implementations of solvers. To identify invalid model bugs,
LAST uses the model to evaluate the test formula when the
solvers return sat correctly. If the formula cannot be evaluated
to sat using the model, we consider it an invalid model
bug. Finally, if any of the solvers exhibit abnormal behaviors
(e.g., assertion violations), the corresponding test formula will
be recorded as a crash bug. After a manual inspection, we
report the identified bugs to the bug tracking systems of the
corresponding solver.

IV. EVALUATION

This section presents a comprehensive evaluation of the
effectiveness of LAST. The experiments conducted aim to
answer the following research questions:
• RQ1: Can LAST generate valid SMT formulas? (Sec-

tion IV-A)
• RQ2: Can LAST be used to expose authentic bugs in SMT

solvers? (Section IV-B)
• RQ3: Does LAST complement the state-of-the-art SMT

fuzzers? (Section IV-C)
• RQ4: How effective are the major components of LAST?

(Section IV-D)
Types of Bugs. As described in Section III-E, bugs in SMT
solvers can be classified into three main different types. This
categorization is consistent with previous studies [9], [11], [42],
[6], [13]. The three categories of bugs are defined as follows:
• Soundness bugs: This type of bug occurs when two solvers
provide opposite results for the same formula, where one
solver reports sat while the other reports unsat. Such
inconsistencies are considered as soundness bugs.
• Invalid model bugs: An invalid model refers to a solver
correctly identifying a formula as satisfiable (sat), but the
model provided by the solver is incapable of satisfying the
constraints in the formula.
• Crash bugs: This type of bug occurs when a solver exhibits
abnormal behavior during the solving process, such as assertion
violations and segmentation faults.
Environment. We conduct all of our experiments on a machine
equipped with an Intel Xeon CPU Gold-6230 processor (40
cores and 128GB RAM) running the Ubuntu 20.04 64-bit
operating system. To facilitate identifying and de-duplicating
crashes such as memory leaks and use-after-free bugs, we build
Z3 and cvc5 with AddressSanitizer [43]. In line with prior
studies [42], [13], we set the time limit for solving queries for
each test formula to 10 seconds.
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Fig. 3: Proportion of valid formulas generated by LAST at
different temperatures.

A. RQ1: Validity of Generated Formulas

In RQ1, we aim to investigate the effectiveness of LAST in
generating valid SMT formulas.

1) Experimental Setup:
In this experiment, a formula is considered valid if it can be

solved by either Z3 or cvc5 without encountering any errors.
Z3 or cvc5 are two established SMT solvers that support a
wide range of logics and have been employed in numerous
related studies for evaluation purposes [9], [11], [12], [13],
[10]. To comprehensively evaluate the validity of the formulas
generated by LAST, we utilize the model to create 1,000
formulas at different temperatures. The temperature is used
to control the level of creativity in the model’s output. We
inspect these formulas with respect to different temperatures
using Z3 and cvc5. Specifically, we generate 1,000 formulas
at each of the temperatures from 0.1 to 1.0 with an interval of
0.1. This temperature range is commonly employed in prior
studies [28]. Ultimately, we calculate the proportion of valid
formulas generated by LAST at different temperatures.

2) Results:
The results of the experiment are presented in Figure 3. We

can find that LAST produces a relatively high proportion of
valid formulas when the temperature is set between 0.2 and
0.7, which is more than 60%. Notably, the highest proportion
of valid formulas (81%) is generated at a temperature of
0.2. These results suggest that the trained model is capable
of generating valid formulas with a high probability within
appropriate temperature ranges. Therefore, to ensure LAST has
a high level of creativity in generating formulas and to make it
have a relatively high probability of generating valid formulas,
we set the temperature to 0.7 in LAST.

B. RQ2: Bug Detection

The objective of RQ2 is to examine whether LAST can
detect authentic bugs in SMT solvers, which serves as an
indicator of the effectiveness of LAST.

1) Experimental Setup:
Targeted Solvers. We select Z3, cvc5, and Bitwuzla as the
target solvers in our experiments. Among them, Z3 and cvc5 are
the two most widely used SMT solvers in the community. They
support a comprehensive range of functionalities defined in the
SMT-LIB standard and have been thoroughly validated by prior

studies [11], [12], [13]. Bitwuzla is a relatively new advanced
SMT solver recommended by one of the cvc5 developers.
Although it only supports a narrow range of logics, “Bitwuzla
is a particularly good candidate since it is very robust” as
the developer claims. As such, we also include Bitwuzla in
our experiments to assess the effectiveness of LAST. Overall,
the three solvers are representative of the state-of-the-art SMT
solvers, and it is extremely challenging to expose bugs in them.
In order to expose new bugs, we always use LAST to test the
latest trunk version of the solvers.

Selected Options. Similar to prior studies [12], [13], our
primary focus in this study is on detecting bugs in the default
mode of the SMT solvers (i.e., no additional options are
enabled). However, certain options are indispensable, such
as the “model validate=true” option in Z3, “–check-models”
option in cvc5, and “–check-model” option in Bitwuzla,
which are enabled to detect invalid model bugs. These op-
tions are considered to be part of the default mode of the
solvers [11]. Furthermore, some important options deserve to
be tested, e.g., Z3’s new core option “tactic.default tactic=smt,
sat.euf=true”, which is expected to become the default mode
of Z3 as it matures [12]. Additionally, the developers of cvc5
provide a list of options that warrant testing and serve as proper
guidelines for fuzzing [44]. Therefore, these options are also
included in our experiments. However, since Bitwuzla does
not support many options, we only test its default mode.

Bug Inspection and Reduction. Despite considering that
false positives can be induced by the under-specified semantics
of SMT-LIB, it remains imperative to thoroughly inspect the
potential bugs identified by LAST to avoid duplicate reports.
When crashes occur, we utilize a bug grouping approach to
identify those crashes pointing to the same line of code as the
same bug and subsequently search for exception information
thrown by the solvers in the bug tracking systems for de-
duplication. For soundness bugs and invalid model bugs,
similar to prior work [9], we report one reduced instance
at a time according to their theory categories. In cases where
multiple formulas with the same theory reveal the same bug,
we prioritize reporting one of them first. Subsequently, we
check whether the remaining formulas can still trigger bugs,
and determine whether or not to report them. If the report
has not been addressed, a consolidated issue is created by
grouping possible relevant bug reports, as suggested by a
primary developer of Z3. This can help avoid duplicate reports
and reduce the workload of developers. Moreover, we also need
to reduce the complexity of the bug-triggering formulas to make
developers easier to understand, confirm, and fix for developers.
To achieve this, we use delta debugging tools specifically
designed for the SMT-LIB language, e.g., ddSMT [45] and
pyDelta [46], to reduce the formulas before reporting them.

2) Results:

Statistics of Bugs. Table II illustrates that LAST has identified
65 bugs in the SMT solvers, of which 45 have been fixed
by the developers. The majority of the remaining bugs are
currently awaiting processing by the developers. While we



TABLE II: Status of bugs found in Z3, cvc5, and Bitwuzla.

Status Z3 cvc5 Bitwuzla Total

Reported 37 24 4 65
Fixed 21 20 4 45
Duplicate 1 0 0 1
Won’t fix 1 1 0 2

TABLE III: Bug types among the fixed bugs.

Type Z3 cvc5 Bitwuzla Total

Crash 13 19 3 35
Invalid model 6 1 1 8
Soundness 2 0 0 2

made a concerted effort to inspect and de-duplicate the bugs
before reporting them, it is impossible to guarantee the complete
absence of duplication. Nevertheless, the small number of
duplicate bugs indicates that the de-duplication process is
effective. In addition, our report includes 2 bugs that the
developers do not plan to address. The main reasons are
either the current lack of bandwidth to address them or the
determination that the reported issues do not qualify as bugs.

Table III presents the bug types of fixed bugs. Notably, the
majority of the fixed bugs (35 out of 45) are crash bugs, while
the remaining bugs include eight invalid model bugs and two
soundness bugs that affect the correctness of the solvers. Of
the fixed bugs, most (34/45) are found in the default mode
of the solvers, with the remainder discovered in the new core
options of Z3 (six fixed bugs) and the options recommended
for fuzzing by cvc5’s developers (four fixed bugs). In summary,
LAST is capable of identifying real bugs in SMT solvers.
Significance. To better understand the significance of the bugs
identified by LAST, we investigate how many of them impact
the release versions of Z3 and cvc5. This analysis sheds light
on the lifespan of the bugs. It is important to note that we
exclude the bugs identified in Bitwuzla from our analysis, as
it is a newly developed SMT solver that does not yet have any
other official release versions.

To investigate the longevity of bugs, we select Z3 release
versions from 4.8.1 to 4.11.0 and cvc5 release versions from
0.0.2 to 1.0.2 as the subjects of our study. Z3-4.8.1 was released
over four years ago in October 2018, while cvc5-0.0.2 was
the first official release version of cvc5, released in October
2021. For each release version of the solvers, we feed in
the test instances of the 41 fixed bugs reported for Z3 and
cvc5 by LAST to check how many bugs also exist in these
release versions. If the original formula can trigger the bug
in the release version, we consider the bug to have existed
in the version. Figure 4 illustrates the fixed bugs that affect
the release versions of Z3 and cvc5. Our analysis reveals that
while most of the bugs were only present in the trunk versions
of the solvers, some bugs had been lurking for a long time.

Specifically, three of the bugs in Z3 remained latent for over
four years, indicating that these bugs were not exposed by the
developers or other SMT fuzzers. Similarly, there were four
bugs in cvc5 that remained latent for around two years. In
conclusion, our findings demonstrate that LAST is capable
of detecting long-latent bugs in SMT solvers, highlighting
the practical importance of our technique. In addition, we
also submitted a Pull Request to Z3’s test suite repository to
include the test instances generated by LAST, which was kindly
accepted by the developers.4 It also reflects the significance of
the bugs identified by LAST.

C. RQ3: Complementarity Analysis

In this RQ, we aim to investigate whether LAST can
complement existing SMT fuzzers from two aspects: (1) the
code coverage achieved by the generated formulas, and (2) the
bug-exposing capability of the generated formulas.

1) Experimental Setup:
Baselines. We compare LAST with the state-of-the-art SMT
fuzzers, namely YinYang [9], STORM [10], OpFuzz [11],
TypeFuzz [12], and HistFuzz [13], from the aforementioned
aspects. All of these fuzzers are open-source and have been
proposed in recent years. For our evaluation, we utilize the
latest versions of these fuzzers available in their respective
GitHub repositories, employing the default configurations as
specified in the original papers.
Code Coverage. To assess the code coverage achieved by
each fuzzer, we sample 100 formulas from the SMT-LIB
benchmarks at random and utilize the four fuzzers, namely
YinYang, STORM, OpFuzz, and TypeFuzz, to generate 10
mutants for each formula, resulting in 1,000 formulas for each
fuzzer. Besides, we employ HistFuzz and LAST to generate the
same number of formulas (i.e., 1,000), respectively. We then
feed the selected seeds with the different groups of formulas
generated by the fuzzers to the solvers and utilize the gcov5 tool
to collect the solvers’ code coverage. To examine the new code
coverage achieved by LAST compared to the baselines, we also
analyze the code coverage achieved by each individual baseline
fuzzer and LAST simultaneously. This experiment is consistent
with the setup of prior studies [12], [13]. Additionally, we
repeat this experiment 10 times and calculate the average of
code coverage to mitigate the influence of randomness.
Bug Exposing. We re-run each fuzzer for 24 hours and record
the number of unique known bugs found by each fuzzer. To
identify the unique bugs, we employed the Correcting Commit
approach [47], [13]. Specifically, we feed a potential bug-
triggering instance to different commit versions of the solvers
and check whether the bug was fixed in one commit. If a bug
can be triggered before a commit while cannot be triggered after
the commit, we consider this commit as the correcting commit
of the bug. The bugs corresponding to different correcting
commits are considered as different bugs. In practice, we
exploit binary search to accelerate the process of identifying

4https://github.com/Z3Prover/z3test/pull/48
5https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://github.com/Z3Prover/z3test/pull/48
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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Fig. 4: Fixed bugs that affect the corresponding release versions of Z3 and cvc5.

TABLE IV: Code coverage achieved by baselines, LAST, and
their combinations on Z3 and cvc5.

Z3 cvc5

line function line function

LAST 30.4% 27.8% 27.5% 43.6%
OpFuzz 20.8% 19.5% 22.1% 40.0%

+ LAST 30.8% 28.1% 27.8% 44.2%
TypeFuzz 20.7% 19.7% 21.6% 38.6%

+ LAST 30.4% 27.9% 27.5% 43.7%
STORM 23.5% 22.3% 23.3% 41.4%

+ LAST 31.5% 28.8% 28.5% 44.9%
YinYang 21.2% 20.2% 22.0% 38.7%

+ LAST 30.5% 27.9% 27.6% 43.8%
HistFuzz 30.9% 28.1% 28.8% 45.4%

+ LAST 33.2% 29.7% 30.3% 46.5%

the correcting commits. It is important to note that in this
experiment, we focus on using fuzzing tools to find known
bugs that have already been resolved, rather than finding new
bugs, which enables us to conveniently determine the number
of unique bugs.

Targeted solvers. In this experiment, we choose Z3 and cvc5 as
the subjects for a fair comparison with other fuzzers. We select
these two solvers because they have been used as subjects
in prior studies. To evaluate the bug-exposing capability of
LAST, we specifically select Z3-4.8.5 and CVC4-1.7 (the
predecessor of cvc5), following the experimental setup of a
prior study [13]. This is because our aim is to find known bugs
in this experiment, and the baselines have already found many
bugs for these two releases and subsequent versions. Besides,
to mitigate the potential influence of data leakage, we also
include the latest release version of the solvers (i.e., Z3-4.12.2
and cvc5-1.0.5) in our experiment. The bug-triggering inputs
used for training are primarily reported and resolved prior to
the release of these versions, thereby avoiding the data leakage
problem. Additionally, the code coverage experiment is also
conducted on the latest versions of the solvers, and we only
adopt the default mode of the solvers in this experiment.
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Fig. 5: The distribution of bugs detected by LAST and the
baselines on previous versions of solvers.

2) Results:
Table IV displays the code coverage attained by the fuzzers

on Z3 and cvc5. Specifically, LAST achieves line coverage
of 30.4% and 27.5% on Z3 and cvc5, respectively, surpassing
the majority of baselines, such as YinYang, STORM, OpFuzz,
and TypeFuzz. Additionally, the combination of LAST and
other fuzzers consistently achieves higher code coverage than
a single baseline alone, indicating LAST’s ability to explore
challenging code locations.

Figure 5 shows the bug distribution identified by LAST and
the baselines on previously selected solver versions. The
results indicate that LAST discovers six bugs within 24 hours,
surpassing the baselines in bug detection. Particularly, two
of the six bugs are detected only by LAST, highlighting
its orthogonal nature concerning existing SMT solver testing
techniques. Notably, STORM fails to identify any bugs within
the same timeframe, and thus we exclude it from the analysis
presented in the figure. For the experiment on the latest versions,
as shown in Figure 6, LAST detects five bugs in Z3-4.12.2 and
cvc5-1.0.5 within 24 hours. However, HistFuzz only discovers
two bugs and YinYang finds one bug, while the other tools fail
to find any bugs. These results indicate that LAST outperforms
the baselines in terms of bug detection on both previous and
latest solver releases.

In conclusion, LAST complements existing SMT solver
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Fig. 6: The distribution of bugs detected by LAST and the
baselines on the latest versions of solvers.

testing techniques in terms of both the achieved code coverage
and bug-finding capacity.

D. RQ4: Ablation Study

This RQ aims to investigate the contributions of the compo-
nents to the effectiveness of LAST, including the finetuning
process and the data augmentation technique. To this end,
we conduct an ablation study using two variants of LAST,
denoted as LAST-woFT, which excludes the finetuning process,
and LAST-woDF, which excludes both the data augmentation
technique and the finetuning process, respectively. We carry out
an analysis of the achieved code coverage of LAST-woFT and
LAST-woDF. The experimental setup for this analysis is the
same as that used for RQ3, which is described in Section IV-C.

Table V presents the results of this experiment. We observe
that the coverage achieved by LAST-woFT is lower than that
of LAST, which illustrates that the finetuning process can
improve the effectiveness of LAST in terms of code coverage.
Moreover, the coverage further decreases when we remove the
data augmentation technique, indicating its effectiveness. In
conclusion, we deduce that both the finetuning process and the
data augmentation technique contribute to the effectiveness of
LAST in terms of code coverage.

V. DISCUSSION

A. Case Study

It is noteworthy that a majority of the bugs identified
by LAST are related to crashes, which warrants further
investigation. To gain a deeper understanding of this trend, we
conduct an analysis of the bug types reported by users in Z3 and
cvc5’s issue trackers. Our analysis reveals that approximately
60% of the bugs in Z3 are crashes, while soundness bugs
account for no more than 20% of the total bugs. Similarly,
in the case of cvc5, over 70% of the bugs are crashes, with
soundness issues comprising less than 10% of the total bugs.
Therefore, we can conclude that crashes are the predominant
type of bugs in SMT solvers, and it is reasonable to expect that
LAST will identify a significant number of such bugs. This
expectation is further supported by the fact that LAST is trained
using historical bug-triggering formulas, many of which consist
of crash bugs. In addition to its proficiency in identifying crash

TABLE V: Comparison of LAST and its variants in terms of
code coverage.

Z3 cvc5

line function line function

LAST 30.4% 27.8% 27.5% 43.6%
LAST-woFT 28.6% 26.3% 26.2% 42.7%
LAST-woDF 26.7% 25.2% 26.1% 41.9%

bugs, LAST has demonstrated an ability to generate interesting
edge cases that were not covered by existing approaches. For
instance, LAST generates a formula related to String theory
containing a UTF-8 character that was not included by the
existing test suite of Z3. This formula triggers a crash bug in
Z3.6 Although the root cause of this issue is the inadequate
support of Z3 for all UTF-8 characters, developers are actively
working to enhance the functionality. Therefore, we believe
that LAST will continue to be a valuable asset in the future.

B. Threats to Validity

This study is subject to several potential threats to validity
that should be considered when interpreting the results. First, it
is shown that the formulas generated by LAST are not always
well-formed, which could potentially affect the experimental
results. However, as noted by the developers of the SMT
solvers [8], even invalid inputs can be useful for fuzzing SMT
solvers to test their ability to handle unexpected or malformed
inputs. Therefore, we view this as a potential threat to internal
validity, but one that is largely mitigated by the goals of
our study. Second, the choice of target solvers used in our
experiments may also introduce a threat to the validity of our
results. To address this, we have selected three solvers - Z3,
cvc5, and Bitwuzla - that represent a mix of mature and newer
solvers. This allows us to evaluate the effectiveness of our
approach across a range of different solvers and provides a
more comprehensive view of its potential impact. Third, we
have implemented LAST based on GPT-2, which is a relatively
small LLM compared to the latest LLMs such as LLaMA-
2 [48]. However, we have demonstrated that LAST is capable
of generating effective formulas for SMT solver testing, and
we believe that utilizing larger LLMs could further enhance
the effectiveness of LAST. Overall, while there are potential
threats to validity inherent in our study, we have made efforts
to mitigate them. We believe that our results provide valuable
insights into the effectiveness of using pre-trained LLMs for
formula generation in SMT solver testing.

C. Future Work

The retrain-finetune approach proposed in this study offers
a unified framework for leveraging the capabilities of LLMs
in software system testing. We believe that this approach can
be further expanded to test a wide range of software systems.
Specifically, there is potential to extend our unified framework

6https://github.com/Z3Prover/z3/issues/6655

https://github.com/Z3Prover/z3/issues/6655


to other software systems, especially those with inputs that
deviate from conventional programming languages, such as
Database Management Systems and Smart Contracts. Addi-
tionally, it would be valuable to investigate the effectiveness
of alternative LLMs in the context of SMT solver testing,
including both open-source and commercial ones.

VI. RELATED WORK

A. SMT Solver Fuzzing

As a cornerstone of formal methods, SMT solvers have been
widely used in various domains in software engineering [49],
[50], [51], [52]. Therefore, the correctness and robustness
of SMT solvers become more significant, and numerous
techniques have been proposed to test SMT solvers accordingly.
These techniques can be roughly divided into two categories:
generation-based and mutation-based. For generation-based
techniques, Robert Brummayer and Armin Biere initially pro-
posed a grammar-based blackbox fuzzing tool, FuzzSMT [7],
to test SMT solvers. More recently, Niemetz et al. [8] proposed
model-based fuzzers, Murxla, to validate SMT solvers by
generating sequences of API calls. However, these generation-
based techniques are limited by predefined generation strategies,
which may not be able to generate diverse test instances.
For mutation-based techniques, Winterer et al. [9] use the
method of semantic fusion to synthesize two formulas and
obtain satisfiability-preserving formulas. STORM [10] obtains
satisfiable formulas with Boolean structures different from the
original seed through construction. OpFuzz [11] tests SMT
solvers by simply mutating operators and achieves satisfactory
results. Sparrow [42] leverages the idea of approximations to
mutate operators and generate formulas with test oracles. To
further broaden the mutation space, Typefuzz [12] improved
OpFuzz by combining mutation and generation to yield more
diverse mutants. HistFuzz [13] extracts the logical structures
of historical bug-triggering formulas and instantiates them with
different atomic formulas to generate new formulas. Although
these techniques have achieved inspiring results, they also
have some limitations since they typically mutate formulas
from specific perspectives and are incapable of generating
sufficiently diverse mutants. Therefore, we propose a learning-
based technique, LAST, to generate a large number of diverse
test instances for SMT solver fuzzing. LAST is retrained
on formulas in SMT-LIB benchmarks and finetuned on bug-
triggering formulas, which is expected to generate effective
and diverse test formulas.

B. Deep Learning for Fuzzing

Deep learning-based fuzzing is a novel technique that
exploits the power of deep neural networks to generate test
inputs for software systems. Fuzzing, a widely used method
for detecting bugs and vulnerabilities in software, involves
providing random or semi-random inputs and observing the
system’s behavior. However, traditional fuzzers often struggle to
generate massive, diverse, and valid inputs that can adequately
exercise the vast codebase of modern software systems. With
recent advancements in pre-trained language models, deep

learning-based fuzzing has emerged as a promising technique
to tackle this challenge. Fuzzing techniques based on LLMs
have also shown promising results in several domains. For
instance, Ye et al. [17] propose a fuzzing technique that fine-
tunes GPT-2 to generate inputs for JavaScript engines. More
recently, Deng et al. [28] employ LLMs to fuzz deep learning
libraries. They use a generative model (i.e., Codex) to generate
programs that invoke deep learning libraries and an infilling
model (i.e., InCoder) to further mutate the generated programs.
In addition to leveraging LLMs in a zero-shot manner, Deng
et al. [29] also propose to finetune LLMs for deep learning
library fuzzing and achieve satisfactory effects.

In this study, we apply LLMs to fuzz SMT solvers. To
unleash the potential of generating effective SMT instances,
we propose a novel retrain-finetune pipeline to transfer the
power of LLMs to SMT solver fuzzing. Our tool, LAST,
can detect authentic bugs in SMT solvers, providing a new
perspective for SMT solver fuzzing.

VII. CONCLUSION

This study presents a novel approach that harnesses large
pre-trained language models for generating SMT formulas to
fuzz SMT solvers. To fully exploit the capabilities of language
models for generating SMT formulas, we employ a retrain-
finetune pipeline that adapts the language models to the domain
of SMT solver. Furthermore, to enhance the effectiveness of
the trained model, we utilize data augmentation techniques via
two formula mutation strategies, namely, diversity-oriented and
semantic-preserving mutations. Our approach is implemented
as a practical fuzzing tool named LAST. To evaluate the
efficacy of LAST, we conducted a bug-hunting campaign
aimed at exposing real bugs in the state-of-the-art SMT
solvers, including Z3, cvc5, and Bitwuzla. The results of our
campaign reveal that LAST reported a total of 65 bugs for the
solvers, of which 45 were subsequently fixed by the developers.
Notably, LAST uncovered several critical and long-latent bugs
in the SMT solvers. The experimental results demonstrate the
potential of leveraging large pre-trained language models for
fuzzing SMT solvers.
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