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ABSTRACT
Ensuring the correctness of code coverage profilers is crucial, given
the widespread adoption of code coverage for various software
engineering tasks. Existing validation techniques, such as differen-
tial testing and metamorphic testing, have shown effectiveness in
uncovering bugs in coverage profilers. However, these techniques
have limitations as they primarily rely on homogeneous sources, i.e.,
different coverage profilers or the profilers themselves, for valida-
tion. In this paper, we propose Decov, a novel heterogeneous testing
technique, to validate coverage profilers using the information pro-
vided by debuggers as a heterogeneous source. Coverage profilers
record execution counts for each source line in the program, while
debuggers monitor hit counts for each source line when running
the program in debug mode. Our key insight is that the execution
counts obtained from coverage profilers should align with the hit
countsmonitored by debuggers, without conflicts. Decov constructs
multiple heterogeneous relations and utilizes them to uncover bugs
in coverage profilers. Through experiments on Gcov and LLVM-cov,
two widely used code coverage profilers, we discovered 21 new
bug reports, with 19 of them directly confirmed by developers. No-
tably, developers have resolved 5 bugs in the latest trunk version.
Decov serves as a simple yet effective coverage profiler validator
and offers a complementary approach to existing techniques.

CCS CONCEPTS
• Software and its engineering→ Functionality; Compilers.
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1 INTRODUCTION
Code coverage refers to the execution frequency of code lines in
a program under specific inputs. As a fundamental measure to
approximate dynamic program behavior, code coverage plays a
crucial role in various software engineering practices, including
software fuzzing [2, 7, 9, 15, 21, 24, 31], test case prioritization [8, 29],
fault localization and repair [22, 23], specification mining [14, 32],
fault detection [16], and program understanding [6]. For example,
in fault localization, code coverage of a target program obtained
from passing and failing tests is integrated into a spectrum, and
then suspicious values are computed for each statement based on
this spectrum [22]. However, incorrect code coverage information
can significantly mislead developers [27]. Therefore, ensuring the
correctness of code coverage profilers is of utmost importance.

Nevertheless, code coverage profilers are susceptible to bugs,
similar to other software systems. A recent study named C2V has
identified over 70 bugs in two popular coverage profilers by employ-
ing a simple randomized differential testing technique [27]. The
effectiveness of C2V’s approach can be ascribed to two fundamental
factors elucidated in existing literature [26]: First, the validation of
coverage profilers has not received sufficient attention from both
developers and academic researchers. Second, the absence of ef-
fective test oracles makes automatic testing of coverage profilers
challenging. In the context of coverage profiler testing, the test
oracle refers to the expected execution frequency of each statement
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under a given test input. Unlike conventional oracles used to vali-
date program functionalities, obtaining a complete coverage oracle
for a target program, especially with respect to specific test inputs,
is extremely challenging. Even if programming experts can specify
such precise test oracles for a given program, it is impractical due
to the significant amount of human intervention required.

To date, two approaches have been proposed to validate coverage
profilers. First, C2V employs differential testing to expose bugs by
comparing the coverage statistics provided by different coverage
profilers [27]. The fundamental assumption of C2V is that distinct
coverage profilers should generate identical coverage for the same
program with the same inputs. However, different profilers are
typically implemented independently and may define inconsistent
coverage semantics. For example, Figure 1 (a) and Figure 1 (c) de-
pict the code coverage reports for the same program obtained by
LLVM-cov and Gcov, two popular C coverage profilers. LLVM-cov
reports that line 13 is not executed as shown in Figure 1 (a), while
Gcov does not provide coverage information for line 13, denoted as
"-1" in Figure 1 (c). However, line 13 was indeed executed, and C2V
missed this bug. Second, Cod proposes the application of metamor-
phic testing to uncover bugs in coverage profilers by comparing the
coverage statistics for path-equivalent programs [26]. Cod detects
bugs by identifying inconsistencies in the coverage statistics gener-
ated for the original program and its equivalent mutated variants
by a single coverage profiler. The key insight of Cod is that when
pruning the unexecuted code of a given program with respect to
a particular input, the coverage statistics of the remaining code
should remain unchanged. Cod has been reported to be effective
in identifying deep bugs in coverage profilers [26]. However, Cod
has several limitations, such as false negatives. Using the program
in Figure 1 as an example, Cod prunes line 13 to generate the “ex-
pected” equivalent mutated program as illustrated in Figure 1 (b).
Regrettably, even after the pruning of line 13, the coverage statistics
for the remaining code remain unchanged, leading to a missed bug
by Cod. The limitations of both C2V and Cod stem from the homoge-
neous nature of the relations they define. Specifically, C2V leverages
another coverage profiler, while Cod uses the profilers themselves
for validation. In essence, they check whether the homogeneous
relations, defined against other profilers or themselves, are violated.
Approach. To address the limitations of existing approaches, we
propose Decov, a heterogeneous testing technique, to further testing
coverage profilers. Specifically, we define heterogeneous relations
with the support of the information provided by a heterogeneous
source, namely debuggers, to validate code coverage profilers. The
key insight of Decov is that the execution count of a statement
obtained from a coverage profiler should not conflict with the hit
count obtained by debuggers. Here, the hit count represents the
number of times a statement has been executed in a debugger. To
discover bugs in profilers, assuming the correctness of the com-
piler and the debugger1, and given a deterministic program P with
a fixed input, Decov first compiles P with the coverage profiling
option (e.g., the “--coverage” option in GCC) and then runs the
compiled program to obtain its coverage statistics using the cover-
age profiler. Subsequently, Decov compiles P with the debugging

1We assume this because, with optimization disabled, mis-compilations and mis-
debugging are rare.

option (e.g., the “-g” option in GCC) and feeds the compiled pro-
gram to a debugger. Using the debugger, Decov debugs P to obtain
the hit count for each statement in P. Decov employs two distinct
debugging strategies to determine the hit count using the debug-
ger. The first strategy is the “break-continue” approach, which sets
breakpoints for each statement and then executes the program us-
ing the “continue” command within the debugger to obtain the hit
count. The “continue” resumes program execution at the address
where the program last stopped, bypassing any breakpoints set at
that address. The second strategy is the “stepping” approach, where
the program is stepped line by line in the debugger to obtain the
hit count for each statement. Decov combines these two strategies
to obtain the hit count for each statement since relying solely on
either strategy cannot accurately represent the actual execution fre-
quencies for each statement (see Section 3.2.2 for detailed insights).
Finally, Decov compares the coverage statistics obtained by the cov-
erage profiler and the fused hit count for each statement obtained
by the debugger to identify potential bugs in coverage profilers. In
other words, if the coverage statistic of a statement conflicts with
the fused hit count derived from both the “break-continue” strat-
egy and the “stepping” strategy in the debugger, a potential bug is
reported. By leveraging the power of debuggers, Decov captures
more comprehensive execution frequencies of code lines, thereby
facilitating the detection of deep-seated bugs in coverage profilers.
Results. We implemented Decov as a tool and investigated its effec-
tiveness on two widely used coverage profilers Gcov and LLVM-cov,
which are integrated with the compiler of GCC and LLVM, respec-
tively. A total of 21 bugs have been reported and 19 of them are
confirmed by the associated developers. In summary, we make the
following main contributions:
• Concept:We introduce the novel concept of heterogeneous testing
for software validation. This concept provides a fresh and innova-
tive perspective, offering a broad range of potential applications
and opening up new avenues for software validation.

• Originality: We leverage the power of heterogeneous testing to
validate code coverage profilers by utilizing information obtained
from debuggers. To the best of our knowledge, we are the pio-
neers in harnessing this information source specifically for the
purpose of validating coverage profilers.

• Implementation: We have implemented our proposed concept
in the form of a prototype called Decov. Decov serves as a straight-
forward yet effective coverage profiler validator with integrated
debugging support. It presents an additional and complementary
solution for exposing bugs in coverage profilers, particularly for
newly designed programming languages.

• Evaluation:We conducted an evaluation of Decov by applying it
to two widely adopted C code coverage profilers. The evaluation
results demonstrate the effectiveness of Decov, as it successfully
uncovered 19 confirmed bugs. Furthermore, Decov exhibits the
capability to detect most of the bugs reported in prior studies,
thereby providing additional affirmation of its efficacy.

Outline. Section 2 briefly describes the background and motivates
our study. Section 3 elaborates on our approach in detail. Section 4
presents the experiment setup and Section 5 presents the evaluation
to Decov. We discuss Decov in Section 6 and the related works in
Section 7. Section 8 concludes our paper.
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1| -1|#include <setjmp.h>

2| -1|

3| -1|struct T {const int x;} g;

4| -1|typedef struct T S;

5| -1|

6| -1|jmp_buf b;

7| ✓1|void f() {longjmp(b,1);}

8| -1|

9| ✓1|int main() {

10| ✓1| if (setjmp(b)) {

11| ✓1| return 0;

12| ✓1| }

13| ×0| S *const s[2] = {&g, &g};

14| ✓1| while(1) f();

15| ×0|}

(a) CP (LLVM-cov)

1| -1|#include <setjmp.h>

2| -1|

3| -1|struct T {const int x;} g;

4| -1|typedef struct T S;

5| -1|

6| -1|jmp_buf b;

7| ✓1|void f() {longjmp(b,1);}

8| -1|

9| ✓1|int main() {

10| ✓1| if (setjmp(b)) {

11| ✓1| return 0;

12| ✓1| }

13| ×0| //S *const s[2] = {&g, &g};

14| ✓1| while(1) f();

15| ×0|}

(b) CP\{𝑠13}(LLVM-cov)

-1:1:#include <setjmp.h>

-1:2:

-1:3:struct T {const int x;} g;

-1:4:typedef struct T S;

-1:5:

-1:6:jmp_buf b;

✓1:7:void foo() {longjmp(b,1);}

-1:8:

✓1:9:int main() {

✓1:10: if (setjmp(b)) {

✓1:11: return 0;

-1:12: }

-1:13: S *const s[2] = {&g, &g};

✓1:14: while(1) foo();

-1:15:}

(c) CP (Gcov)

$ clang -g a.c

$ lldb a.out

(lldb) b a.c:13

Breakpoint 1: a.out at a.c:13:12

(lldb) run

-> 13 S *const s[2] = {&g, &g};

(lldb) continue

Process exited

(d) OP (LLDB)

Figure 1: LLVM bug 45166. LLVM-cov incorrectly reported that Line 13 is not executed as shown in (a). When setting breakpoint
at Line 13, Line 13 is hit by LLDB in (d). This bug cannot be detected by Cod as removing Line 13 does not affect the coverage
statistics of the remaining code as shown in (b). Besides, this bug is also missed by C2V as Gcov does not provide coverage
information for Line 13 as shown in (c). ‘-1’ denotes that the Line is not instrumented and then no coverage information is
provided. A check or cross mark followed by a number 𝑛 denotes the execution count of that Line.

2 BACKGROUND AND MOTIVATION
In this section, we introduce the background for coverage profilers
and debuggers. Then, we describe existing coverage validation
techniques and discuss their limitations.

2.1 Coverage Profilers
Code coverage refers to the execution frequency of code lines with
respect to a program’s execution under particular test cases. The
source-level coverage information is widely adopted to support
many software engineering tasks. As the most widely used crite-
rion in measuring the testing adequacy of test cases, it is deeply
used for automated software testing. For instance, in the context of
regression testing, we often generate test cases covering changed
source code to augment a test suite [3]. To collect code coverage
information, a compiler needs to emit additional code along with
the executable. Along with a program’s execution, the required
information will be generated and later used by coverage profil-
ers. With the generated runtime information, a coverage profiler
produces for each code line 𝑠 ∈ P an execution count CP (𝑠) = 𝑛.
Due to the default optimizations within the compiler, it is rather
common that some source code lines are not instrumented, and
thus the coverage profiler cannot provide coverage information
for those lines. In this paper, we use 𝑛 = −1 to denote unknown
coverage information.

2.2 Debuggers
Debuggers are used to locate and fix programming errors in a target
program. It allows developers to see what is going on inside the
target program at runtime or what is the target program doing at
the moment it crashes. In practice, popular debuggers such as GDB
and LLDB support a rich set of debugging actions including setting
breakpoints on different program locations, stepping program line
by line, and inspecting program state at runtime such as the stack
frame and the values of variables. With the provided debugging
actions, developers can start a program, make a program stop on
specified breakpoints, and examine what has happened when the
program stops. This helps developers observe the behavior of the

target program at runtime. To aid debugging activities, compilers
generate debug information together with the machine executable
code [1]. For instance, in the case of C compilers, users can enable
debug information by specifying the "-g" flag. The debug informa-
tion contains references to functions, variables, and line numbers
in the source code. When a debugging session is initiated, the de-
bugger leverages this debug information to establish a meaningful
connection between the executing program and its source code,
enabling developers to navigate and understand the program’s
behavior seamlessly.

2.3 Coverage Profilers Validation
Code coverage profiler validation is challenging as it involves in-
tensive human efforts to validate the ground truth of the cover-
age statistics. There are only two existing techniques for coverage
profiler validation: C2V and Cod. C2V uses differential testing to
validate code coverage profilers [27]. Given a program P, C2V uses
two independently implemented profilers to obtain the coverage
statistics, i.e., CP (𝑠) and C′

P (𝑠). When CP (𝑠) ≠ C′
P (𝑠) ∧ CP (𝑠) ≥

0 ∧ C′
P (𝑠) ≥ 0, C2V regards it as a potential bug and employs clus-

tering to filter out potential duplicated test programs. Cod uses
metamorphic testing to validate code coverage profilers. Given a
program P, Cod generates P’s equivalent variant P′ by pruning
unexecuted statements in P according to P’s coverage statistic CP .
Then, Cod obtains the variant’s coverage statistic CP′ by using the
same coverage profiler. For any statement 𝑠 in both P and P′ (i.e.,
𝑠 ∈ P and 𝑠 ∈ P′), a potential bug will be found in coverage profiler
C if CP (𝑠) ≠ CP′ (𝑠).

2.4 Limitations of Existing Works
Limitations of the differential testing technique. According to
the prior study [27], the main limitations of the differential testing
technique are summarized as follows: First, C2V cannot be applied if
there is no comparable coverage profiler. This is common for many
mainstream programming languages, e.g., Python and Perl. Second,
differential testing may miss many potential bugs as independently
implemented coverage profilers have different opinions on which code

https://github.com/llvm/llvm-project/issues/45166
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should have coverage information. A prior study showed that, for
Gcov and LLVM-cov, about 50% lines of code in those test programs
are non-common instrumentation lines [27]. According to the prior
work [26], only half lines of code have coverage statistics for both
Gcov and LLVM-cov. In other words, the correctness of the coverage
statistics for about half of a program is still unknown in C2V.

Limitations of the metamorphic testing technique. To address
the disadvantages of differential testing, Yang et al. [26] proposed
Cod to validate code coverage profilers via metamorphic testing.
One major flaw of Cod is that it cannot be applied if no code line
can be pruned to generate equivalent programs. As a result, it may
lead to many false negatives. This will frequently occur in two
cases: (1) No source line of code is reported as unexecuted. In other
words, each source line in program P is either executed or with
no coverage information, i.e., ∀𝑠 ∈ P, CP (𝑠) > 0 ∨ CP (𝑠) = −1.
In this situation, Cod cannot be applied to generate equivalent
variants; (2) All the unexecuted source lines are incomplete statements.
In Cod, the path-equivalent programs are generated by pruning
unexecuted statements. However, only complete statements can
be pruned, whereas coverage statistics from profilers are provided
at the line level rather than the statement level. Consequently,
many source lines that contain incomplete statements, such as
for/while/switch expressions placed on different lines, cannot
be pruned. Another reason why Cod may generate false negatives
is that pruning uncovered code lines might not affect the coverage
statistics of the remaining code lines. This is exemplified by the
case shown in Figure 1, where pruning line 13 does not impact the
coverage statistics of the remaining code lines. Consequently, Cod
fails to identify this bug as well.

2.5 Motivation
Although existing techniques are effective in exposing bugs in code
coverage profilers, they are both limited by the fact that they use
homogeneous sources for validation. Particularly, C2V uses two
different profiler implementations to seek inconsistencies while
Cod defines metamorphic relations with the coverage statistics
by the profilers themselves. Therefore, it motivates us to look for
other information from a heterogeneous source (i.e., other than
the coverage statistics generated by profilers) for coverage profiler
validation. In this study, we resort to the information provided
by debuggers. As mentioned before, our key insight is that the
coverage statistics of a statement by a coverage profiler should be
consistent with the hit count obtained by debuggers.

Let us use a concrete example in Figure 1 to illustrate our idea.
This is a real bug of LLVM-cov exposed by Decov. In Figure 1 (a),
Line 13 in the program is reported as not executed by LLVM-cov.
Cod will then prune this unexecuted line, which should not affect
the coverage statistics of the remaining code according to Cod’s pre-
defined metamorphic relations. Figure 1 (b) is the coverage statistics
of the equivalent program after pruning Line 13. We can find that
the coverage statistics for the common statements are consistent
(i.e., the coverage statistics of Lines 7, 9-12, 14 in Figure 1 (a) and
Figure 1 (b)). As a result, no bug is reported by Cod. However, LLDB
will reach this line if we set a breakpoint at Line 13 as shown in
Figure 1 (d). This line will be hit once when stepping this program
in LLDB. That is to say, the hit count of Line 13 is supposed to be 1.

Sourceprogram 𝓟

Binary program 𝓟d

Stepping Break-continue

Hit count 𝓗b

Integrator

Hit count 𝓗s

Hit count 𝓗

Comparer

Code coverage 𝓒

Executing

Binary program 𝓟c

Consistent?

Profiling output Debugging output Debugging output

profile option debug option

No

Coverage profiler

Bug report

Compiler

Debugger

Figure 2: The framework of Decov

Such a result indicates that line 13 should be executed when given
the same input, which contradicts the coverage statistics generated
by the profiler. Therefore, it motivates us to leverage the informa-
tion provided by debuggers to design heterogeneous relations to
expose potential bugs in coverage profilers.

3 APPROACH
In this paper, we propose to validate code coverage profilers with
the help of debugging support.

3.1 Formulation
In this study, for a given statement 𝑠 in program P, we use CP (𝑠)
to denote its coverage statistic provided by a coverage profiler and
HP (𝑠) to denote its hit count recorded by a debugger. Here, a
statement 𝑠 is a source line of code with executable code elements,
i.e., a non-blank source line of code, while lines consisting solely of
braces or comments are excluded from our analysis. Based on our
observations, we propose the following heterogeneous relations by
comparing CP(𝑠) and HP(𝑠) for program P with the same input.

If a statement has both coverage information and debug infor-
mation, the coverage statistic provided by a coverage profiler should
not conflict with the hit count provided by a debugger.

We call this relation heterogeneous relation since the information
is provided by a heterogeneous source, i.e., the hit count by a de-
bugger. This relation should be satisfied since (1) when a statement
is not hit by a debugger after setting a breakpoint against it or not
hit when stepping the program line by line, it indicates that the
statement has not been executed when feeding the input, and thus
a coverage profiler should not report that the statement is executed;
(2) when a statement is hit by a debugger, i.e., the statement has ac-
tually been executed when feeding the input, the coverage statistic
by a profiler should not conflict with the hit count by the debugger
if it is available.
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3.2 Framework
Based on the formalized heterogeneous relations as described above,
we implemented a tool named Decov for testing C code coverage
profilers. Decov consists of four main steps: (1) extract code cov-
erage statistics for each line of code by a coverage profiler after
executing the program, (2) step the program line by line in a debug-
ger and extract the hit count information H𝑠 , (3) run the program
in the debugger via setting breakpoints for each line of code and
extract the hit count informationH𝑏 , (4) integrateH𝑠 andH𝑏 to ob-
tain the fused hit countH𝑝 , and (4) compare the coverage statistics
and the fused hit counts to expose bugs.

Figure 2 shows our framework for testing coverage profilers.
First, Decov specifies the coverage profiling options of a compiler
to compile the program P and executes the binary with input 𝑖 to
obtain the profiling output, which records the coverage statistics for
each line CP . Then, Decov specifies the debug option of a compiler
to compile the same program and executes the program P in a
debugger with two different debugging strategies. One debugging
strategy is stepping the program line by line and the other one
is setting breakpoints for each line of code to run the program.
Decov extracts the hit count of each statement for different debug-
ging strategies, which is denoted as H𝑠 andH𝑏 , respectively. After
that, Decov integratedH𝑠 andH𝑏 to obtain the fused hit countH𝑃 .
Finally, it compares the coverage statistics and the hit count of each
line of code to validate the coverage profiler T. A potential bug in
T will be reported if any of them violates the predefined relations.
We describe each of the steps in detail as follows.

3.2.1 Extract Coverage Statistics. For a given test program P, we
specify the coverage profiling options for the compiler to gener-
ate the profiled executable as P𝑐 . The compiler will generate the
information required by the coverage profilers and also integrate in-
strumentation code into the binary. Then Decov executes P𝑐 to gen-
erate the profiling output. With the profiling output and the source
program, we can obtain the code coverage report CP by the cover-
age profiler T. The code coverage report is the coverage statistics of
each line for the test program P under the input 𝑖 . Decov can be ap-
plied to both the Gcov and the LLVM-cov profilers. For instance, to
extract the coverage information by Gcov, Decov specifies the “-O0
--coverage” flag to GCC when compiling the program P to P𝑐 .
This flag instructs the GCC compiler to include additional code in
the executable, enabling the generation of supplementary profiling
information during program execution. Subsequently, Decov exe-
cutes the resulting executable P𝑐 with input 𝑖 , thereby generating
the coverage report for program P.

3.2.2 Extract and Fuse Hit Count. To extract the hit counts for
the test program P, we specify the debug options for compilers
to generate the executable as P𝑑 . The debug options enable the
compiler to generate debug information along with the executable
binary. The debug information establishes a mapping between the
source code and the executable. Specifically, Decov adopts two dif-
ferent debugging strategies to obtain the hit count. The first one
is the “stepping” strategy, in which case Decov runs the program
P𝑑 via stepping line by line in the debugger, and then extracts the
hit count HS for each statement. At each step, the current stack
frame will be examined and recorded to the debug output O. Taking

GDB as an example, Decov uses the debug action sequence “start
→ while(true) {frame→ step}” to query the current stack frame
iteratively until the program P𝑑 exits for the “stepping” strategy.
Here, the debug action “start” instructs GDB to run the program
and stops at the beginning of the main procedure of P𝑑 . The debug
action “frame” examines the stack frame when GDB stops at any
program location of P𝑑 , and “step” continues to run the program
in GDB until reaches a different source line. The second one is the
“break-continue” strategy, in which case Decov sets breakpoints
for all statements with debug information, runs the program to
observe its execution, and then obtains the hit count HB . When
the debugger stops at any breakpoint, the current stack frame will
be examined and recorded. For GDB, Decov uses the debug ac-
tion sequence “break s1 → break s2 → ... → run → while(true)
{frame → continue}” to query the stack frame iteratively until
the program P exits for the “break-continue” strategy. Here, the
debug action “continue” resumes program execution at the loca-
tion where it stopped. With the debug action sequence and the
executable, Decov executes program P𝑑 to obtain the debugging
output. Then, Decov extracts the hit count HS and HB with re-
spect to the two debugging strategies. Finally, Decov integrates the
hit count HS and HB into HP . We adopt the integration strategy
because the hit count from the “break-continue” strategy may be
inconsistent with the hit count from the “stepping” strategy, and
thus the hit count obtained from either of these strategies in iso-
lation cannot precisely represent the actual execution frequencies
for each statement. For instance, under the "stepping" strategy, if
a source line is a function call to a user-defined function, the de-
bugger hits the line twice: once when reaching the function call
and again after returning from the callee. Conversely, in the "break-
continue" strategy, the function call is hit only once. Consequently,
if a function call has been executed𝑚 times, the hit count obtained
by the “break-continue” strategy is 1 ∗𝑚, while the hit count from
the "stepping" strategy is 2 ∗𝑚. Therefore, the hit count from the
"stepping" strategy for a function call does not accurately repre-
sent the actual execution frequencies. Similarly, for a “for (init;
condition; increment)” loop, it is hit only once in the "break-
continue" strategy when the execution reaches the loop. Regardless
of how many times the condition and increment expressions are
executed, the loop is never hit again. Thus, the hit count from the
“break-continue” strategy for the loop cannot accurately represent
the actual execution frequencies. Due to such expected behaviors of
debuggers, we thus integrate the hit counts from these two different
debugging strategies to obtain an integrated hit count for each line
of code. In particular, if a source line of code is a loop statement, its
coverage statistic will be compared against the hit count from the
“stepping” strategy. If it is a function call statement, the coverage
statistic will be compared against the “break-continue” strategy.

3.2.3 Compare Coverage Statistics and Hit Counts. Using coverage
statistics from the profiler and hit counts for program P obtained
through two debugging strategies, Decov uncovers bugs in code
coverage tools by checkingwhether they violate our predefined rela-
tion. More specifically, for a source line 𝑠 that has debug information
and coverage information provided by the coverage profiler (i.e.,
CP (𝑠) ≠ −1), Decov verifies if the coverage statistics CP (𝑠) conflict
with the hit counts obtained from the two debugging strategies.
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1 #define N 8

2

3 int main(){

4 int i=32;

5 if(i<N)

6 return 1;

7 }

(a) P

1| ✓1|#define N 8

2| -1|

3| ✓1|int main(){

4| ✓1| int i=32;

5| ✓1| if(i<N)

6| ✓1| return 1;

7| ✓1|}

(b) CP (LLVM-cov)

$ clang -O0 -g a.c

$ lldb a.out

(lldb) break 6

Breakpoint 1: a.out \

at a.c:6:5

(lldb) run

Process exited

(c) OP (LLDB)

Figure 3: LLVM-cov bug 45194. LLVM-cov incorrectly reported that the return 1; in Line 6 is executed once. Setting breakpoint
in Line 6 will produce a valid breakpoint at this statement. However, when running it in LLDB, Line 6 is not hit by LLDB. That’s
to say, Line 6 is not executed according to LLDB. Note that, this bug has been fixed by developers.

There are four different situations: (1) If a source line is neither hit
by the “stepping” strategy nor hit by the “break-continue” strategy,
the source line should not be executed or with no coverage infor-
mation; (2) If a source line is a loop statement and hit by debugger
under the “stepping” strategy, its coverage statistic should be equal
to the hit count from the “stepping” strategy or with no coverage in-
formation; (3) If a source line is a function call statement and hit by
debugger under the “break-continue” strategy, its coverage statistic
should be equal to the hit count from the “break-continue” strategy
or with no coverage information; (4) If a source line is neither a
loop statement nor a function call statement when the line is hit
by debugger under either “stepping” strategy or “break-continue”
strategy, its coverage statistic should be equal to the hit count from
either one of the two debugging strategies. Above all, assuming
that D(𝑃), L(𝑃), F (𝑃) represent the set of statements with debug
information, the set of loop statements, and the set of function call
statements in the program P, respectively for any source line 𝑠
with coverage information, i.e., CP (𝑠) ≠ −1, the following relations
should be satisfied:

HR#1:∀𝑠 ∈ D(𝑃), HS (𝑠) = 0 ∧HB (𝑠) = 0 ⇒ CP (𝑠) = 0
HR#2:∀𝑠 ∈ D(𝑃), 𝑠 ∈ L(𝑃) ∧ HS (𝑠) ≥ 1 ⇒ CP (𝑠) = HS (𝑠)
HR#3:∀𝑠 ∈ D(𝑃), 𝑠 ∈ F (𝑃) ∧ HB (𝑠) ≥ 1 ⇒ CP (𝑠) = HB (𝑠)
HR#4:∀𝑠 ∈ D(𝑃), HS (𝑠) ≥ 1 ∨HB (𝑠) ≥ 1 ⇒

CP (𝑠) = HB (𝑠) ∨ CP (𝑠) = HS (𝑠)

Note that, if a statement is a mix of loop and function call, e.g.,
function call as the loop-expression, it will neither considered as a
loop-statement nor a function call statement. It is also worth noting
that only the source lines with debug information are considered
for further comparison. This is because the hit count monitored
by the debugger for a source line without debug information is
inaccurate. Therefore, in such cases, we refrain from utilizing this
information to validate coverage profilers.

3.3 Illustrative Examples
In this section, we use three concrete bug examples to illustrate
how Decov works. All these bugs are detected by Decov and have
been confirmed by developers.
Bug Example with Bug Type of Spurious Marking. Figure 3 is a
bug of LLVM-cov exposed by Decov with the bug type of Spurious
Marking, i.e., there exists an unexecuted statement that is wrongly
marked as executed by the coverage profiler [27]. That is to say,
there is a statement hit by LLDB but not marked as executed by

LLVM-cov. Figure 3 (a) and (b) show the program and the cover-
age report produced by LLVM-cov, respectively. Note that all the
presented test programs are reformatted to ease presentation. As
can be seen, the coverage report produced by the coverage profiler
in Figure 3 (b) is an annotated version of the source code, which
includes the execution frequency along with each line. The first
column is the line number and the second column is the execution
count. The “-1” shown in the second column indicates that the
coverage profiler does not provide coverage information for this
line as it is not instrumented. In this example, to obtain the hit
count for Line 6 in program P, we first use Clang to compile P
with the debug information enabled. Then, Decov sets breakpoints
for Line 6 in program P. Specifically, Decov uses the debug action
sequence “run → continue → continue→ ...” to execute P and
then obtain the debug output OP as shown in Figure 3 (c). We can
find that when running the program in the debugger, the process
is directly exited without break at Line 6. Consequently, the hit
count of Line 6 is 0. Furthermore, when stepping program P line
by line, Line 6 is not hit in LLDB either. However, CP (𝑠6) is 1, and
the predefined relation HR is violated. Therefore, a potential bug is
uncovered in LLVM-cov, which is reported as LLVM bug 45194. It
is worth noting that this bug was initially marked as resolved, then
subsequently reopened, and ultimately resolved by the developers.

Bug Example with Bug Type of Missing Marking. Figure 4
shows a real bug example exposed by a statement hit by LLDB
but not marked as executed by LLVM-cov. The type of this bug
is Missing Marking, i.e., there exists an executed statement that
is wrongly marked as uncovered [27]. Figure 4 (a) and (b) are the
program and the code coverage report produced by LLVM-cov,
respectively. In this example, Decov steps program P line by line.
Specifically, Decov uses the debug action sequence “break main
→ run→ step → step → ...” to execute P and then obtains
the debug output O as shown in Figure 4 (c). We can find that
LLDB stops at Line 4 two times, and thus the hit count of Line 4 is 2.
However, CP (𝑠4) is 0. The predefined relation between the coverage
statistics and the hit count is not satisfied. Thus, a potential bug is
uncovered in LLVM-cov. We reported this bug, and it was promptly
confirmed by the LLVM developers.

Bug Example with Bug Type of Wrong Frequency. Figure 5
illustrates another real bug example for coverage profiler Gcov.
This bug is uncovered as the execution count from Gcov exceeds
the hit count monitored by the debugger for Line 8. Figure 5 (a),
(b), and (c) show the test program P, the code coverage statistics
produced by Gcov, and the debug output from GDB, respectively.

https://github.com/llvm/llvm-project/issues/45194
https://github.com/llvm/llvm-project/issues/45194
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1 void main() {

2 int s = 0;

3 switch (s) {

4 for (; ;) {

5 s++;

6 case 0:

7 if (s>=2)

8 break;

9 }

10 }

11 }

(a) P

1| -1|void main(){

2| ✓1| int s = 0;

3| ✓1| switch (s){

4| ×0| for (; ;){

5| ✓2| s++;

6| ✓3| case 0:

7| ✓3| if (s>=2)

8| ✓1| break;

9| ✓2| }

10| ✓1| }

11| ✓1|}

(b) CP (LLVM-cov)

$ clang -g a.c; lldb a.out

(lldb) break main

Breakpoint 1: at a.c:2

(lldb) run

-> 2 int s = 0;

(lldb) ...

(lldb) step

-> 4 for(; ;){

(lldb) ...

(lldb) step

-> 4 for(; ;){

(c) OP (LLDB)

Figure 4: LLVM-cov bug 45023. LLVM-cov incorrectly reported the for(;;) expression in Line 4 is not executed. However, Line
4 is hit by LLDB when setting breakpoint for it.

1 __attribute__ ((always_inline))\

2 int foo (int v) {

3 return (v << 8) | (v >> 8);

4 }

5

6 int main () {

7 int b = 0;

8 return foo(b);

9 }

(a) P

-1:1:__attribute__ ((always_inline))\

-1:2:int foo (int v) {

×0:3: return (v << 8) | (v >> 8);

-1:4:}

-1:5:

✓1:6:int main() {

✓1:7: int b = 0;

✓2:8: return foo(b);

-1:9:}

(b) CP (Gcov)

$ gcc -O0 -g a.c

$ gdb a.out

(gdb) break 8

Breakpoint 1 at \

file a.c, line 8.

(gdb) run

-> 8 return foo(b);

(gdb) continue

Process exited

(c) OP (GDB)

Figure 5: Gcov bug 93706. Gcov incorrectly reported that the return foo(b); in Line 8 is executed twice. However, the debugger
only hit Line 8 once when setting breakpoint for Line 8 in GDB. This bug cannot be detected by Cod as removing Line 3 will not
affect the coverage statistic of the rest code. In practice, Line 3 is replaced with a blank statement ‘;’ rather than just removed.

From Figure 5 (b), we can see that Line 8 is executed twice in Gcov.
When setting a breakpoint at Line 8 in P and running the program
P in GDB, the debugging process exits after taking the “run →
continue” debugging actions. Therefore, Line 8 is only hit one
time by the GDB. Therefore, the predefined relation is not satisfied
and indicates a potential bug in Gcov. This bug has already been
confirmed by the GCC developers.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup in detail, includ-
ing the research questions, the subject coverage profilers under test,
the debuggers used for the validation, and the test programs.

4.1 Research Question
In this paper, we study the following research questions:

• RQ1: (Effectiveness) How effective is Decov in uncovering
coverage profiler bugs?

• RQ2: (Significance) How significant are the bugs exposed
by Decov?

• RQ3: (Complementarity) How does Decov complement ex-
isting techniques?

4.2 Evaluation Setup
In this section, we describe the coverage profilers, the debuggers,
and the test programs chosen for the validation. Note that, all

experiments were conducted on a hexa-core Intel(R) Core(TM)
CPU@3.20GHz with 10GiB RAM running Ubuntu 20.04.

Subject Coverage Profilers. We applied Decov to the latest trunk
versions of Gcov and LLVM-cov, the two popular C code coverage
profilers. We chose them as subjects for the following reasons:

(1) They have been widely used in the engineering community;
(2) They are integrated into the well-known production compilers,

i.e., GCC and Clang, respectively.
(3) They are used as the subject profilers in prior studies, and thus

we can easily and fairly compare with previous approaches.

To extract code coverage reports by using Gcov and LLVM-cov
for each test program, we use the compilation flag “-O0” when
compiling test programs to profiling executables. At “-O0”, most
optimizations are completely disabled. This profiling strategy for
the coverage profilers is also adopted in prior studies [26, 27]. For
a given source file a.c, the commands used to produce the code
coverage report a.c.gcov are as follows:
$ gcc -O0 --coverage a.c && ./a.out && gcov a.c

For LLVM-cov, the following commands are used to produce the
coverage report a.c.lcov:
$ clang -O0 -fcoverage-mapping -fprofile-instr-generate

a.c && ./a.out

$ llvm-profdata merge default.profraw -o a.pd

$ llvm-cov show a.out -instr-profile=a.pd a.c > a.c.lcov

https://github.com/llvm/llvm-project/issues/45023
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93706
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Debuggers Support Validation. To validate Gcov and LLVM-cov
using Decov, we use GDB and LLDB as debugging tools to provide
the debugging information. GDB is the GNU debugger while LLDB
is the LLVM debugger. These two debuggers are selected due to
their association with the respective compiler toolchains. To ex-
tract the hit count by using GDB and LLDB for each test program,
we compile them with debug options enabled and compiler opti-
mizations disabled. The hit count is only obtained for code lines
that have associated debug information. Specifically, when utilizing
GDB to obtain the code lines with debug information for a given
source file, such as a.c, the following commands are employed:
$ gcc -O0 -g a.c && gdb ./a.out

(gdb) start

(gdb) maint info line-table

For LLDB, the following commands are used to obtain the code
lines with debug information:
$ clang -O0 -g a.c && lldb ./a.out

(lldb) image dump line-table a.c

Having the code lines with debug information, we develop a Python
script to run debug sessions non-interactively for GDB and LLDB
and extract the hit counts for the program P under the “stepping”
and the “break-continue” debugging strategies, respectively.
Subject Test Programs Consistent with the prior study [26], we
use the C programs inside the test-suite of GCC release of 7.4.0
as the subject test programs. In total, there are 26,530 C source
programs. We choose these test programs as the subject testing
inputs for the validation of C code coverage profilers because (1)
they have been used as the subject programs in the prior study [26];
(2) they are open source which can be easily obtained; (3) They
are typically used for compiler regression testing, covering a wide
range of C semantics; and (4) many of these test programs can
be compiled and executed independently, as they do not rely on
external libraries and have fixed inputs.

5 EVALUATION
We elaborate on the evaluation for Decov in this section. We ap-
ply Decov to validate the two most widely used C code coverage
profilers and compare Decov with two state-of-the-art approaches,
namely Cod [26] and C2V [27].

5.1 Effectiveness of Decov
Our aim is to find previously unknown bugs for code coverage pro-
filers. To this end, we applied Decov to the latest version of Gcov
in GCC (until GCC 11.0.0 20210113) and LLVM-cov in LLVM (until
LLVM 12.0.0) during our experiments. As mentioned in Section 4.2,
we employ the test programs in the GCC test-suite as the subject
test programs. For each of the test programs, we use the aforemen-
tioned commands to extract code coverage statistics and monitor
the hit counts by debuggers. With the collected code coverage re-
ports and the hit counts of specific statements, Decov uncovers
bugs in code coverage profilers by checking whether the prede-
fined heterogeneous relations are violated. For each test program,
Decov generates the code coverage reports by the target profilers
(i.e., either Gcov or LLVM-cov) and the hit counts with the associ-
ated debuggers. In this experiment, we exclude those uncompilable
programs with respect to GCC and Clang. Besides, the programs

Table 1: List of confirmed or fixed bugs reported by Decov.

ID Profiler #ID Current Status Cod C2V

1 Gcov 93680 Confirmed × ✓

2 Gcov 93706 Confirmed × ✓

3 Gcov 97910 Confirmed × ✓

4 Gcov 97917 Confirmed × ✓

5 Gcov 97923 Confirmed × ×
6 Gcov 97924 Confirmed × ✓

7 Gcov 97925 Confirmed × ✓

8 Gcov 105500 Fixed × ✓

9 LLVM-cov 44940 Confirmed × ✓

10 LLVM-cov 45023 Confirmed × ×
11 LLVM-cov 45166 Confirmed × ×
12 LLVM-cov 45190 Confirmed × ✓

13 LLVM-cov 45191 Confirmed × ×
14 LLVM-cov 45194 Fixed × ×
15 LLVM-cov 45195 Fixed × ✓

16 LLVM-cov 47607 Confirmed2 × ×
17 LLVM-cov 47608 Confirmed × ×
18 LLVM-cov 48139 Fixed × ✓

19 LLVM-cov 48162 Fixed × ✓

The last two columns indicate whether the bug is able (denoted as ✓) or unable (denoted as
×) to be identified by the existing technique of Cod or C2V

that require more than ten seconds to run are also excluded. This
is because our aim is to detect new bugs in code coverage profilers
as efficiently as possible. Thus, in this study, Decov tends not to
waste time for waiting the test programs that require a long time
for the execution to be finished. Decov may generate false posi-
tives in specific scenarios. First, an inline assembly statement may
possess debug information but never be reached by Gdb. Second,
statements like "while(1)" or "for(;;)" may never be hit by LLDB.
Third, a statement containing a loop macro might be hit only once
in GDB and the execution count is only one in LLVM-cov, while
being executed or hit multiple times in Gcov or LLDB. These di-
vergent behaviors are expected due to their varying explanations
for such statements. To mitigate false alarms, Decov employs an
automated filtering mechanism to exclude such violations.
Bugs Found. We manually inspected each of the violations in the
test programs identified by Decov. Decov provides reports indicat-
ing the specific lines in a test program that violate the predefined
relations. It is worth emphasizing that the examination of suspi-
cious coverage statistics is not a resource-intensive endeavor, as we
can ascertain the presence of a potential bug in the coverage profiler
by scrutinizing the coverage statistics surrounding the suspicious
lines. To date, we totally reported 21 bugs to the Bugzilla databases
of GCC and LLVM. Note that the bug management guidelines of
GCC and LLVM are not exactly similar [12, 17, 26]. Specifically, a
reported bug in GCC Bugzilla will be initially labeled as “UNCON-
FIRMED”, and the status will turn to “NEW” if developers confirm
it. However, in LLVM, a reported bug will be labeled as “NEW”
by default, and the status will turn to “CONFIRMED” if develop-
ers confirm it. In addition, a bug report reopened by developers
is also considered as a confirmed bug report. Worthy noting that

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93680
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93706
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97910
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97917
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97923
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97924
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97925
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105500
https://github.com/llvm/llvm-project/issues/44940
https://github.com/llvm/llvm-project/issues/45023
https://github.com/llvm/llvm-project/issues/45166
https://github.com/llvm/llvm-project/issues/45190
https://github.com/llvm/llvm-project/issues/45191
https://github.com/llvm/llvm-project/issues/45194
https://github.com/llvm/llvm-project/issues/45195
https://github.com/llvm/llvm-project/issues/47607
https://github.com/llvm/llvm-project/issues/47608
https://github.com/llvm/llvm-project/issues/48139
https://github.com/llvm/llvm-project/issues/48162
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there are still many unfixed bugs reported in prior studies. Some
violations detected by Decov are associated with these previously
unfixed bug reports. Thus, to avoid duplicate bug reports, we man-
ually inspected each violation and only filed 21 new bug reports
to the Bugzilla database of GCC and LLVM. Among the 21 new
bug reports, 19 bugs have been directly confirmed by developers
as depicted in Table 1, and two bugs are marked as duplicate re-
ports. Of the total 19 confirmed bugs, 5 have been resolved by the
developers. For two of these bugs (one in Gcov and the other in
LLVM-cov), the developers have provided comments detailing the
corresponding fixing commits. Besides, all of the remaining three
fixed bugs are attributed to LLVM-cov. These three bugs were ini-
tially confirmed in Bugzilla and later migrated from Bugzilla to the
LLVM GitHub project repository.3 Upon further examination, it has
been observed that these bugs no longer exist in the latest trunk
version of LLVM-cov. Consequently, the LLVM developers have
marked these bugs as completed and closed them. In the present
context, these three bugs are also considered resolved bug reports.

5.2 Significance of Decov

Buggy versions of Profilers. To further understand the importance
of the bugs discovered by Decov, we investigate the official release
versions of profilers that are affected by the confirmed bugs. Here,
we select Gcov-4.4.7 (released on March 13, 2012), LLVM-cov-3.6.0
(released on Feb. 27, 2015), and the subsequent official release ver-
sions of the profilers as the subjects. Note that the versions of GNU
and LLVM toolchains are consistent with the versions of profilers.
As Figure 6 shows, two bugs in Gcov appeared at version 4.4.7,
which means they are latent for about eight years and not found
by other testing tools. This circumstance is similar to LLVM-cov.
Concretely, 2 out of the 11 confirmed bugs were induced in LLVM
five years ago. In conclusion, a number of the bugs detected by
Decov have long lifespans, which indicates the bugs’ significance.

Feedback and discussions. After the bug reports are submitted,
many of them invoke developers’ lively discussion and may inspire
their work in progress. For example, with respect to LLVM-cov
bug 44940, two developers express their opinions. Ultimately, in-
spired by our reported bug, one of the developers comments that
they could refine a previous code revision to resolve the reported
bug. For the Gcov bugs, the developers usually point out the root
causes of the reported issues in the comments. According to the de-
velopers’ response, we deduce that the bugs identified by Decov are
meaningful and contribute well to the compiler community.

5.3 Complementarity of Decov
In this section, we investigate whether Decov is complementary to
the state-of-the-art approaches (i.e., Cod [26] and C2V [27]). To this
end, we first analyze how many bugs reported by Decov cannot
be detected by existing approaches. Then, we investigate whether
the bugs reported in prior studies can be also detected by Decov.
Furthermore, we analyze the relationship between the identified
inconsistencies between Decov and the existing techniques to ana-
lyze Decov ’s potential ability to expose new bugs.

3https://github.com/llvm/llvm-project/milestone/1
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Figure 6: Confirmed bugs that affect corresponding release
versions of Gcov and LLVM-cov.

Table 2: The number of bugs reported by Cod and C2V that
can also be identified by Decov.

Bug Source Gcov LLVM-cov Total

Cod 18/20 3/3 21/23
C2V 15/25 24/28 39/53

Comparisons via existing bug reports. To have a comprehen-
sive understanding of Decov’s capability to uncover bugs compared
with the existing techniques, we conducted two investigations. First,
we examined whether bugs identified by Decov can be also detected
by the state-of-the-art techniques. For this purpose, we employed
Cod and C2V to validate the profilers on the versions where we
reported the corresponding bugs, using the provided test programs
in the bug report. Table 1 presents the results, indicating that none
of the bugs could be detected by the existing metamorphic test-
ing technique Cod, while 12 out of the 19 bugs can be identified
by the differential testing technique C2V. The results show that
a number of bugs reported by Decov are difficult to identify by
existing techniques. Second, we investigated how many bugs found
by Cod and C2V can be detected by Decov. We employed the test
programs from the bug reports provided by Cod and C2V as the
subject test programs for the investigation. We checked whether
our pre-defined HRs were violated within Decov. If a violation was
detected, we consider the corresponding bug to be exposed by our
tool Decov. As depicted in Table 2, Decov successfully uncovered
21 out of the 23 bugs identified by Cod and 39 out of the 53 bugs
identified by C2V. These results collectively demonstrate the effec-
tiveness of Decov in detecting coverage profiler bugs and its ability
to identify the majority of bugs reported by previous studies.
Comparisons via inconsistent source code. In this section, we
made a comparison for Decov with the state-of-the-art approaches
based on the identified source code that violates respective rela-
tions. Worthy noting that the identified source code that triggers
inconsistencies only indicates potential bugs rather than real bugs
of coverage profilers due to the presence of false positives. To de-
termine whether it is indeed a real bug, we often need to perform
manual inspections. However, this comparison can be viewed as a

https://github.com/llvm/llvm-project/issues/44940
https://github.com/llvm/llvm-project/milestone/1
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(a) file level for Gcov (b) file level for LLVM-cov

(c) line level for Gcov (d) line level for LLVM-cov

Figure 7: The relationship of test programs and code line set
violating predefined relations for C2V, Cod, and Decov.

preliminary analysis of their potential bug finding capabilities. To
have a fair comparison, we use the test programs in the test-suite
of GCC 7.4.0 to evaluate the old version of Gcov and LLVM-cov, re-
spectively. Here, the Gcov in GCC 7.5.0 and the LLVM-cov in LLVM
6.0.0 are used as the subject versions. Additionally, we employ the
LLDB associated with the LLVM toolchain while the version of GDB
is 8.1 since GDB tends to be separate from the GCC toolchain. It is
unfair to make such comparisons for these three tools in the latest
version as there are a number of bugs reported by C2V and Cod that
have been fixed in the latest version of Gcov and LLVM-cov. Thus,
we choose the old version of Gcov and LLVM-cov rather than the
latest version. For each of the test programs in the test-suite of GCC
7.4.0, we use C2V, Cod, and Decov to check whether the predefined
homogeneous or heterogeneous relations are violated, respectively.
Table 3 presents the statistics of the test programs that violate the
predefined heterogeneous relations in Decov, C2V, and Cod for Gcov
and LLVM-cov. As shown in Table 3, there are 217 and 371 test
programs, respectively, that violate at least one of the predefined
heterogeneous relations in Decov for Gcov and LLVM-cov.

• Comparison at the test program level. Figure 7 (a) and (b)
show the relationship between the potential bug-triggering test
programs identified by C2V, Cod, and Decov for Gcov and LLVM-
cov, respectively. Among them, 217 (4.4%) and 371 (7%) test pro-
grams violate the heterogeneous relations according to Decov for
Gcov and LLVM-cov, respectively. Of these 217 and 371 test pro-
grams, 100 and 182 do not have an inconsistent coverage report
pair according to C2V for Gcov and LLVM-cov. Besides, 190 and
362 of them do not violate the metamorphic relations defined
in Cod. In other words, there may exist many potential bugs
exposed by Decov that cannot be identified by the existing ap-
proaches, indicating the uniqueness of Decov. Besides, C2V iden-
tified 739 test programs violating those homogeneous relations,
and Cod identified 268 and 16 test programs violating those ho-
mogeneous relations for Gcov and LLVM-cov, respectively. From
Figure 7 (a) and (b), we can find that a large number of potential

Table 3: Test programs violating predefined relations for C2V,
Cod, and Decov.

Technique Profilers Violated Reports Consistent Reports

C2V - 739 4674

Cod
Gcov 268 4441
LLVM-cov 16 4717

Decov
Gcov 217 4674
LLVM-cov 371 4905

bugs found by C2V and Cod can be also found by Decov. Besides,
it is evident that these three techniques can identify their own dis-
tinct violated programs. This demonstrates the complementary
nature of these approaches.

• Comparison at source line level. Figure 7 (c) and (d) present
the relationship between the source lines of code that violate
respective relations according to C2V, Cod, and Decov for Gcov
and LLVM-cov, respectively. At the source line level, we observed
that C2V identifies a larger number of inconsistent source lines of
code compared to the other two approaches. This is because each
test program may contain multiple source lines that violate the
predefined relations. Furthermore, Decov identified 168 and 520
source lines of code that solely violate our predefined relations
for Gcov and LLVM-cov, respectively. This also demonstrates
that Decov complements existing approaches.

6 DISCUSSION
In this section, we discuss how efficient Decov is, how developers
fix code coverage bugs, and the threats to validity.

6.1 How efficient is Decov?
In this section, we discuss whether Decov’s efficiency is accept-
able in practice. To investigate this, we compare the time over-
head of Decov with C2V and Cod. To have a fair comparison, we
run C2V, Cod, and Decov over the same test programs in the test-
suite of GCC 7.4.0. The results are shown in Table 4. In Table 4,
the first and the second columns are respectively the technique
and the profiler under test. The third column is the number of test
programs that are successfully used for testing the profilers by dif-
ferent approaches. In the context of Cod, a test program is regarded
as ‘successfully used’ when Cod is capable of generating compilable
equivalent mutations for the given test program. The fourth and
fifth column is the average and median time overhead among those
test programs. From Table 4, we can find that the average time
cost of C2V and Cod is around 0.35 seconds. However, the average
time overhead of Decov for Gcov and LLVM-cov are 1.97 and 2.55
seconds on average, respectively. It is obvious that our approach is
more expensive than existing approaches as it requires stepping test
programs in debuggers. However, to improve the coverage profilers’
correctness, we believe this overhead is considered acceptable.

6.2 How do developers fix code coverage bugs?
Bug 45194 in LLVM-cov is a resolved issue that was discovered
by Decov. The bug involved incorrect coverage results due to the
presence of a macro constant in an if expression. To rectify this

https://github.com/llvm/llvm-project/issues/45194
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Table 4: Summarization of time overhead for C2V, Cod,
and Decov over the programs in test-suite of GCC 7.4.0.

Technique Profiler #Test programs Avg.(s) Median(s)

C2V Gcov vs LLVM-cov 5413 0.35 0.32

Cod
Gcov 2936 0.27 0.25

LLVM-cov 2794 0.39 0.37

Decov
Gcov 4891 1.97 1.35

LLVM-cov 5276 2.55 1.89

issue, the LLVM developer “Emit gap region after conditions when
macro is present”. A gap region typically refers to a section of code
that is intentionally excluded from the coverage analysis. The bug
fix involved modifications in seven files, resulting in 94 additions
and 50 deletions. Specifically, a significant alteration of 47 LoC
was made in clang/lib/CodeGen/CoverageMappingGen.cpp, the
component responsible for generating instrumentation-based code
coverage mappings for LLVM-cov. Similarly, in the case of fixing
bug 105500 in Gcov, the GCC developer improved the accuracy
of the mapping strategy for the determination of basic block-line
associations. This modification resulted in a substantial change of
121 LoC across two files, allowing for more precise corresponding
basic blocks and code lines as reflected in the .gcno files.

6.3 Threats to Validity
The first threat is the assumption that the hit count information
from the debugger is accurate. In order to reduce this threat, we
randomly selected 100 test programs from the GCC and LLVM
test-suite and manually examine the accuracy of the hit count infor-
mation produced by GDB and LLDB. We found that the hit count
information was accurate for these programs. Additionally, upon
manual inspection of all the violations found by Decov, we deter-
mined that all of them were caused by bugs in the code coverage
profilers. Therefore, it is reasonable to believe that GDB and LLDB
can provide accurate hit count debug information. The second
threat is that our approach may not be able to generalize to other
coverage criteria as we only focus on line coverage. The reasons
why we only focus on line coverage are as follows: (1) line cover-
age is easy to obtained and widely applied to a large spectrum of
software engineering tasks; (2) line coverage is the basis of other
coverage criteria as they can be derived based on line coverage. In
our experiment, we reformatted the test programs in test-suite of
GCC and LLVM before feeding them to the coverage profilers and
the debuggers. This can ensure that most of the statements indeed
correspond to one single line. Currently, we are exploring how to
generalize our approach to other coverage criteria such as branch
coverage and condition coverage.

7 RELATEDWORK
Testing for Coverage Profiler Validation. In the field of coverage
profiler validation, there are two existing approaches have been
proposed, utilizing differential and metamorphic testing techniques,
respectively. Differential testing is a widely used technique for ad-
dressing the oracle problem in software testing [10, 13, 18, 19],
including the profiler testing technique C2V [27]. C2V randomly

generates programs, feeds them into different coverage profilers,
and reports potential bugs if the resulting coverage reports are
inconsistent. C2V has successfully detected 70 bugs for coverage
profilers. The metamorphic testing technique, Cod [26], uncovers
bugs by comparing the coverage statistics of path-equivalent pro-
grams. Cod has exposed a total number of 23 bugs so far. However,
as mentioned in Section 2.4, both C2V and Cod still have certain
limitations. To address these limitations, we propose to leverage
the debugging information to validate code coverage profilers.

Testing based on Metamorphic Relation. The concept of meta-
morphic testing, initially proposed by T.Y. Chen in 1998, aims to
alleviate the test oracle problem [4]. By examining whether the
specific metamorphic relations hold across different inputs, this
approach can effectively expose software bugs. Metamorphic test-
ing has proven successful in various domains, such as software
fuzzing [2, 7, 9, 15, 21, 24, 31], regression testing [5, 8], compiler
testing [11], debugger testing [20], coverage profiler testing [26],
machine learning classifications [25], and security [30]. In this pa-
per, we extend the application of metamorphic testing by leveraging
heterogeneous relations, supported by external debug information,
to validate code coverage profilers.

8 CONCLUSION
Assuring the quality of coverage profilers is essential as the code
coverage information is of great importance to many software
engineering tasks. In this study, we propose to validate coverage
profilers through heterogeneous testing. Specifically, we resort to
the heterogeneous information provided by debuggers to validate
coverage profilers. Our key insight is that the coverage statistics
of a statement by a coverage profiler have heterogeneous rela-
tions with the hit count by a debugger. We implemented our idea
as a prototype, Decov, and the evaluation results showed that it
is complementary to existing approaches. Besides, it can also al-
leviate several limitations of the state-of-the-art approaches. We
applied Decov to two most widely-used code coverage profilers
and have exposed 21 new bugs. Of the 21 bugs, 19 bugs have been
confirmed by developers.

9 DATA-AVAILABILITY STATEMENT
Decov and the scripts for the experiments are publicly available at:
https://doi.org/10.5281/zenodo.8275866 [28].
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